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Motivation

● Recurrent neural networks (RNNs) are limited in their ability to represent 
variables and data structures and to store data over long timescales, owing to 
the lack of an external memory. 

● Neural Turing Machines (NTM) are neural networks coupled with external 
memory, which they can interact with by attentional processes. 

● The system is like a differentiable and can be trained by gradient descent. With 
memory, it can learn to represent and manipulate complex data structures. 

● Differentiable Neural Computer (DNC) is built upon NTM with more reading 
mechanisms that can use memory more flexible way while keeping track of 
the temporal information. 
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Problem statement

I. To test out DNC model on various simple algorithmic tasks:
A. Top-k sorting
B. Shortest path in a graph
C. Connectedness queries

II. ‘Thinking’ state
A. A state where model is not absorbing any input or output.
B. This allows model to do complex manipulation of memory.
C. Testing out model on different task to check improvements.



Neural Turing Machine

● Neural Turing machine 
introduced in Graves et al. 
(2014) is analogous to a 
Turing Machine but it is 
differentiable end-to-end 
and can be trained 
efficiently using gradient 
descent. 



Neural Turing Machine

● The architecture of the 
Neural Turing Machine 
contains two basic 
components: a controller 
and a memory bank. 

● The controller has the 
capability to interact with 
external world as well as 
the memory bank. 
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Writing



Addressing Mechanisms

● Content based addressing: focuses attention on locations based on similarity of 
current values and values emitted by the controller.

● Location based addressing: conventional address based addressing
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● The NTM has no mechanism to ensure that blocks of allocated memory do not 
overlap and interfere. 

● The NTM has no way of freeing locations that have already been written to and, 
hence, no way of reusing memory when processing long sequences. 

● Sequential information is preserved only as long as the NTM continues to 
iterate through consecutive locations. 
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DNC solves these problem!

● Interference is not an issue for the dynamic memory allocation used by DNCs, 
which provides single free locations at a time, irrespective of index, and 
therefore does not require contiguous blocks. 

● DNC has free gates, one per read-head, that determine whether the most 
recently read locations can be freed. This helps in freeing locations that have 
already been written to. 

● The temporal link matrix used by DNCs blocks tracks the order in which writes 
were made. Hence, sequential information is always preserved.



Dynamic External Memory

Implementation in PyTorch at https://github.com/ixaxaar/pytorch-dnc.

https://github.com/ixaxaar/pytorch-dnc


Datasets and Evaluation

We generate synthetic data for following tasks:

● Top-k sorting: For top-k sorting, we input a sequence of numbers in form of 
their bit representation. This is followed by an end-of-sequence flag which is 
further followed by the k query and an end-of-query flag.
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Datasets and Evaluation

We generate synthetic data for following tasks:

● Shortest path in a graph: For shortest path task, we input the model with bit 
representations of pair of nodes which have edges between them which is 
followed by an end-of-sequence tag. After this, a pair of query nodes is given 
between which the path is desired. Finally, we give the end-of-query flag as the 
input.

● The target output is selected based on the actual output: the path having closest 
bit representation as output is chosen.



Datasets and Evaluation

We generate synthetic data for following tasks:

● Connectedness: For connectedness task, we input the graph as done in shortest 
path task. There are multiple queries to the model in form of pairs of nodes and 
followed by end-of-queries flag. We train the model to output 1 if pair of nodes 
are connected in the graph by some path, and 0 otherwise.



Datasets and Evaluation

Average logistic loss in scale of 10−4, trained under three different settings: 1) 64 
memory vectors are used while training, 2) 128 memory vectors are used while 
training, and 3) 10 thinking steps are used after input and before emitting the output.
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- 10 thinking steps consistently perform better by almost 20-25% 
- the thinking really helps the model to better interpret the input 
- surprising that more memory for has adversely affected performance for top-k 

sorting and shortest path task



Datasets and Evaluation

- 10 thinking steps consistently perform better by almost 20-25% 
- the thinking really helps the model to better interpret the input 
- surprising that more memory for has adversely affected performance for top-k 

sorting and shortest path task
- possibly due to the oversized memory which doesn’t help the performance but 

decreases it because controller decisions on reading and writing memory 
involve more complexity now
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Datasets and Evaluation (Top-k Sorting)

- model is unable to learn the top-k sorting task perfectly
- but it precisely learns to capture the most significant bit with very high 

confidence
- also, the end marker is correctly predicted 
- indicates that the model has learned to capture the k provided as the query 

vector 
- internally implements a counter to keep a count
- surprising  that lower bits are not recalled well
- because bit representations are (intuitively) the simplest representations 
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Datasets and Evaluation (Shortest Path)

- model is giving end-of-output tag which is the last bit at an earlier step 
- seeing a lot of such examples, we realized model is always giving two vectors 

followed by end-of-sequence tag
- most examples that are input the model have queries with pair of nodes that are 

two hops apart.
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Datasets and Evaluation (Connectedness)

- model learned an average output for all the queries and converged
- number of outputs exactly equal to the number queries
- model learned to count the number of queries and output the number of 

predictions accordingly



Conclusion

● Understood the working of neural Turing machine and differential neural 
computer and their major differences.

  

● Trained and evaluated DNC on top-k sort, shortest-path and connectedness task. 

● Highlighted the observed strengths and shortcomings of the DNC model for the 
three tasks.



THE END


