
My Experiments with
Differentiable Neural Computers

CS 726 Course Project
Anmol Kagrecha, Karan Taneja, Pranav Kulkarni, Udayan Joshi

Content

● Motivation and Problem statement

● Neural Turing Machine

● Addressing Mechanisms

● Dynamic External Memory

● Datasets and evaluation

Motivation

● Recurrent neural networks (RNNs) are limited in their ability to represent
variables and data structures and to store data over long timescales, owing to
the lack of an external memory.

Motivation

● Recurrent neural networks (RNNs) are limited in their ability to represent
variables and data structures and to store data over long timescales, owing to
the lack of an external memory.

● Neural Turing Machines (NTM) are neural networks coupled with external
memory, which they can interact with by attentional processes.

● The system is differentiable and can be trained by gradient descent. With
memory, it can learn to represent and manipulate complex data structures.

Motivation

● Recurrent neural networks (RNNs) are limited in their ability to represent
variables and data structures and to store data over long timescales, owing to
the lack of an external memory.

● Neural Turing Machines (NTM) are neural networks coupled with external
memory, which they can interact with by attentional processes.

● The system is like a differentiable and can be trained by gradient descent. With
memory, it can learn to represent and manipulate complex data structures.

● Differentiable Neural Computer (DNC) is built upon NTM with more reading
mechanisms that can use memory more flexible way while keeping track of
the temporal information.

Problem statement

I. To test out DNC model on various simple algorithmic tasks:
A. Top-k sorting
B. Shortest path in a graph
C. Connectedness queries

Problem statement

I. To test out DNC model on various simple algorithmic tasks:
A. Top-k sorting
B. Shortest path in a graph
C. Connectedness queries

II. ‘Thinking’ state
A. A state where model is not absorbing any input or output.
B. This allows model to do complex manipulation of memory.
C. Testing out model on different task to check improvements.

Neural Turing Machine

● Neural Turing machine
introduced in Graves et al.
(2014) is analogous to a
Turing Machine but it is
differentiable end-to-end
and can be trained
efficiently using gradient
descent.

Neural Turing Machine

● The architecture of the
Neural Turing Machine
contains two basic
components: a controller
and a memory bank.

● The controller has the
capability to interact with
external world as well as
the memory bank.

Reading

Writing

Addressing Mechanisms

● Content based addressing: focuses attention on locations based on similarity of
current values and values emitted by the controller.

● Location based addressing: conventional address based addressing

Limitations of NTM

● The NTM has no mechanism to ensure that blocks of allocated memory do not
overlap and interfere.

Limitations of NTM

● The NTM has no mechanism to ensure that blocks of allocated memory do not
overlap and interfere.

● The NTM has no way of freeing locations that have already been written to and,
hence, no way of reusing memory when processing long sequences.

Limitations of NTM

● The NTM has no mechanism to ensure that blocks of allocated memory do not
overlap and interfere.

● The NTM has no way of freeing locations that have already been written to and,
hence, no way of reusing memory when processing long sequences.

● Sequential information is preserved only as long as the NTM continues to
iterate through consecutive locations.

DNC solves these problem!

● Interference is not an issue for the dynamic memory allocation used by DNCs,
which provides single free locations at a time, irrespective of index, and
therefore does not require contiguous blocks.

DNC solves these problem!

● Interference is not an issue for the dynamic memory allocation used by DNCs,
which provides single free locations at a time, irrespective of index, and
therefore does not require contiguous blocks.

● DNC has free gates, one per read-head, that determine whether the most
recently read locations can be freed. This helps in freeing locations that have
already been written to.

DNC solves these problem!

● Interference is not an issue for the dynamic memory allocation used by DNCs,
which provides single free locations at a time, irrespective of index, and
therefore does not require contiguous blocks.

● DNC has free gates, one per read-head, that determine whether the most
recently read locations can be freed. This helps in freeing locations that have
already been written to.

● The temporal link matrix used by DNCs blocks tracks the order in which writes
were made. Hence, sequential information is always preserved.

Dynamic External Memory

Implementation in PyTorch at https://github.com/ixaxaar/pytorch-dnc.

https://github.com/ixaxaar/pytorch-dnc

Datasets and Evaluation

We generate synthetic data for following tasks:

● Top-k sorting: For top-k sorting, we input a sequence of numbers in form of
their bit representation. This is followed by an end-of-sequence flag which is
further followed by the k query and an end-of-query flag.

Datasets and Evaluation

We generate synthetic data for following tasks:

● Shortest path in a graph: For shortest path task, we input the model with bit
representations of pair of nodes which have edges between them which is
followed by an end-of-sequence tag. After this, a pair of query nodes is given
between which the path is desired. Finally, we give the end-of-query flag as the
input.

Datasets and Evaluation

We generate synthetic data for following tasks:

● Shortest path in a graph: For shortest path task, we input the model with bit
representations of pair of nodes which have edges between them which is
followed by an end-of-sequence tag. After this, a pair of query nodes is given
between which the path is desired. Finally, we give the end-of-query flag as the
input.

● The target output is selected based on the actual output: the path having closest
bit representation as output is chosen.

Datasets and Evaluation

We generate synthetic data for following tasks:

● Connectedness: For connectedness task, we input the graph as done in shortest
path task. There are multiple queries to the model in form of pairs of nodes and
followed by end-of-queries flag. We train the model to output 1 if pair of nodes
are connected in the graph by some path, and 0 otherwise.

Datasets and Evaluation

Average logistic loss in scale of 10−4, trained under three different settings: 1) 64
memory vectors are used while training, 2) 128 memory vectors are used while
training, and 3) 10 thinking steps are used after input and before emitting the output.

Datasets and Evaluation

- 10 thinking steps consistently perform better by almost 20-25%
- the thinking really helps the model to better interpret the input
- surprising that more memory for has adversely affected performance for top-k

sorting and shortest path task

Datasets and Evaluation

- 10 thinking steps consistently perform better by almost 20-25%
- the thinking really helps the model to better interpret the input
- surprising that more memory for has adversely affected performance for top-k

sorting and shortest path task
- possibly due to the oversized memory which doesn’t help the performance but

decreases it because controller decisions on reading and writing memory
involve more complexity now

Datasets and Evaluation (Top-k Sorting)

Datasets and Evaluation (Top-k Sorting)

- model is unable to learn the top-k sorting task perfectly
- but it precisely learns to capture the most significant bit with very high

confidence
- also, the end marker is correctly predicted
- indicates that the model has learned to capture the k provided as the query

vector
- internally implements a counter to keep a count
- surprising that lower bits are not recalled well
- because bit representations are (intuitively) the simplest representations

Datasets
and
Evaluation

(Shortest
Path)

Datasets and Evaluation (Shortest Path)

- model is giving end-of-output tag which is the last bit at an earlier step
- seeing a lot of such examples, we realized model is always giving two vectors

followed by end-of-sequence tag
- most examples that are input the model have queries with pair of nodes that are

two hops apart.

Datasets
and
Evaluation

(Connectedness)

Datasets and Evaluation (Connectedness)

- model learned an average output for all the queries and converged
- number of outputs exactly equal to the number queries
- model learned to count the number of queries and output the number of

predictions accordingly

Conclusion

● Understood the working of neural Turing machine and differential neural
computer and their major differences.

● Trained and evaluated DNC on top-k sort, shortest-path and connectedness task.

● Highlighted the observed strengths and shortcomings of the DNC model for the
three tasks.

THE END

