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I. INTRODUCTION

Digital cameras face a fundamental trade-off between spatial
and temporal resolution. This limitation is primarily due to
hardware factors such as the readout and time for analog-to-
digital (A/D) conversion in image sensors. The problem can be
alleviated by using parallel A/D converters and frame buffers
but it incurs more cost.

Hitomi et al. [1] and Liu et al. [2] propose techniques
for sampling, representing and reconstructing the space-time
volume in order to overcome this trade-off. We aim to propose
and experiment with different sampling strategies which can
improve the performance but are not necessarily constrained
by hardware implementations.

The techniques used by Hitomi et al. [1] and Liu et al. [2]
contain several hyper-parameters. We also aim to understand
the effect of these hyper-parameters on the performance of the
techniques by performing exhaustive experiments.

II. OVERVIEW OF THE APPROACH

Denote the space-time volume corresponding to an M ×M
pixel neighborhood and one frame integration time of the
camera as E(x, y, t). A projection of this volume along the
time dimension is captured by a camera. A N times gain
in temporal resolution needs to be achieved, i.e., recovery
of space-time volume E needs to be done at a resolution of
M×M×N . Let S(x, y, t) denote the per-pixel shutter function
of the camera within the integration time (S(x, y, t) ∈ {0, 1}).
Then, the captured image I(x, y) is

I(x, y) =

N∑
t=1

S(s, y, t).E(x, y, t). (1)

Rewriting the (1) in the matrix form as I = SE. I which
is the vector of observations has a size M2 and E which is
the vector of unknowns has a size N × M2. To solve the
under-determined system of equations above, techniques of
compressed sensing are used. The sytem above can be solved
faithfully if the signal E has a sparse representation α in a
dictionary D:

E = Dα = α1D1 + · · ·+ αkDk (2)

where α = [α1, · · · , αk]T are the coefficients, and
D1, · · · ,Dk are the elements in dictionary D. The coefficient
vector α is sparse. The over-complete dictionary D is learned

Fig. 1: Overview of the approach [1]

from a random collection of videos. The space-time volume
E is sampled with a coded exposure function S and then
projected along the time dimension, resulting in a coded
exposure image I.

An estimate of the coefficient vector α̂ can be obtained by
solving a standard problem in compressed sensing:

α̂ = arg min
α
‖α‖0 subject to ‖SDα− I‖22 < ε (3)

The space-time volume is computed as Ê = Dα̂. A pictorial
representation of the approach containing three steps viz.
coded sampling, dictionary learning and sparse reconstruction
is given in figure 1.
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III. SAMPLING STRATEGIES

A. Continuous Bump

The continuous bump sampling strategy is a strategy that
satisfies hardware constraints and is proposed by Liu et al. It
satisfies the following constraints:
• Binary shutter: The sampling function S takes values in
{0, 1}. At any time t, a pixel is either collecting light
(1-on) or not (0-off).

• Single bump exposure: Each pixel can have only one
continuous on time (i.e., a single bump) during a camera
integration time.

• Fixed bump length: The bump length is fixed for all
pixels.

We implement this strategy as follows:
1) For each pixel in the input video, the bump start time

is selected uniformly randomly, i.e., the bump start time
at any pixel can be t with probability 1/N where N is
the temporal depth of E.

2) Space time volume at a pixel is added when the shutter
function is 1. The coded image is constructed by aver-
aging the above sum.

B. Random Sampling

In this sampling strategy, the bump period may not be
continuous. Fix a bump length b and let the temporal depth
be N , then this strategy is implemented as follows:

1) For every point in an input video, i.e., a point described
by (x, y, t), the shutter function takes value 1 with
probability b/N .

2) Space time volume at a pixel is added when the shutter
function is 1. The coded image is constructed by aver-
aging the above sum.

It might happen for a pixel location that the number of time
instants where shutter function takes value 1 is not equal to
the bump length.

C. Distributed Bump

Here, we constrain that for every pixel location, the number
of time instants where shutter function takes value 1 is equal
to the bump length. This is implemented as follows:

1) Generate b distinct random integers between 1 and N .
2) Space time volume at a pixel is added when the shutter

function is 1. The coded image is constructed by aver-
aging the above sum.

IV. DETAILS OF ALGORITHMS USED

A. Orthogonal Matching Pursuit (OMP)

We use the OMP[3] algorithm for both dictionary learning
as well as for reconstruction, i.e, finding the coefficient vector
α. The algorithm is given in Algorithm 1.

Here A is the measurement matrix, y is the measurement
vector and T0 is the sparsity constraint. For the purpose
of reconstruction, the measurement matrix A is DS and the
measurement vector y is I.

Algorithm 1 OMP algorithm

procedure OMP(A, y, T0)
S0 ← ∅
x0 ← 0
for i ∈ {1, ..., T0} do

jn+1 ← arg maxj
{
|(A∗(y− Axi))j |

}
Sn+1 ← Sn ∪ {jn+1}
xn+1 ← arg minz∈Cn

{
‖y−Az‖2, supp(z) ⊂ Sn+1

}

B. K-SVD

K-SVD [4] is used to learn the dictionary from the training
videos. The algorithm is given in Algorithm 2. The task is to
find the best dictionary to represent the data samples {yi}Ni=1

as sparse compositions by solving

min
D,X
{||Y− DX||2F } subject to ∀i, ||xi||0 ≤ T0

Algorithm 2 K-SVD algorithm

procedure KSVD
Set the dictionary matrix D(0) ∈ Rn×k with l2 normal-

ized columns
Set J=1
while stopping rule is not satisfied do

Use any pursuit algorithm to compute representation
vectors xi, for each example yi, by approximating
the solution of

i = 1, 2, . . . , N,min
xi
{||yi − Dxi||22} subject to ||xi||0 ≤ T0

For each column k = 1, 2, . . . ,K in D(J−1), update
it by:

— Define the group of examples that use this atom
ωk = {i|1 ≤ i ≤ N, xkT (i) 6= 0}
— Compute the overall representation error matrix
by Ek = Y−

∑
j 6=k djxJT

— Restrict Ek by choosing only the columns corre-
sponding the ωk, and obtain ERk
— Apply SVD decomposition ERk = U∆VT .
Choose the update dictionary column dk to be the
first column of U. Update the coefficient vector xkR
to be the first column of V multiplied by ∆(1, 1)

Set J = J + 1.

V. EXPERIMENTS PERFORMED

A. Setup

Given is an overview of our experimental setup:

1) We collected a high temporal resolution (1000 fps) video
containing a variety of scenes.

2) We sample 20 videos having the number of frames equal
to the temporal depth. The starting times of these videos
are selected randomly.
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3) We fix the number of dictionary elements to be learned
for each video. The data provided to K-SVD is a collec-
tion of patches which have been rotated in 8 directions.

4) Dictionary elements for each video are then learned
using K-SVD and appended to get a final dictionary.

5) We then perform coded sampling on the training videos
to obtain the training coded images. We also perform
coded sampling on a set of test videos to obtain the test
coded images.

6) Reconstruction is done patch-wise using the OMP algo-
rithm. The overlap between the patches is controlled by
the parameter ’stride’.

7) Finally we calculate the relative mean squared error
(RMSE) between the original video V and the recon-
structed video V̂. RMSE is defined as:

RMSE =
‖V− V̂‖2F
‖V‖2F

(4)

where ‖·‖F is the Frobenius norm.

B. Implementational details

The setup has 4 main components. Prepossessing of videos
performed to normalize each video and reduce spatial dimen-
sion to size 160x320. A function to generate a coded image is
implemented which takes in as input the pre-processed videos
and parameters depending on the sampling scheme. Another
function is implemented which can learn the dictionary using
the KSVD algorithm based on the parameters provided such
as sparsity level and the number of basis in the dictionary.
A module to reconstruct video from the coded aperture uses
OMP to find sparse representation in the learn dictionary basis.
We use the libraries provided in [5] for KSVD and OMP, as
these were much more efficient in their execution time that
the functions written by us.

Following are the typical parameters that we worked with.
In each of the subsequent experiments, we vary one or two
of these parameters at a time to observe their effect on
reconstruction error. Image size is 160x320 with temporal
depth is set to 36. The sparsity of the videos is assumed to
be 40, and 625 basis learned from each of the 20 videos and
appended together to get the dictionary. We use patch size of 8
and stride of 4 in our experiments. Bump length for generating
the coded image is taken to be 3.

C. Parameters

The parameters of the experiments performed are:

• Temporal depth
• Sparsity
• Bump length
• Number of basis per video segment
• Patch size
• Stride
• Noise variance in the coded image
• Sampling function

D. Noise Variance and Bump Length

We increase the bump length from 1 to 5 and the reconstruc-
tion gets better as the bump length increases. The sampling
strategy here uses a continuous bump.

After a point increase in bump length (towards S(x, y, t) =
1) is expected to increase the RMSE. As time progresses,
the pixel values are less likely to be correlated. If highly
uncorrelated values are added, it is going to lead to a loss
of information.

RMSE also increases with increase in noise variance. This
is expected because more noise is will lead to a greater loss
of information. The trends for the training and test data are
shown in figure 2.

Fig. 2: Effect of Noise Variance and Bump Length

E. Temporal Depth

We fix the sampling strategy to continuous bump. We
observe that the RMSE increases with an increase in temporal
depth. This is because a greater number of elements need to
be recovered from the same amount of evidence. The trends
for the training and test data are shown in figure 3.

F. Sparsity and Number of Basis Elements in Dictionary

We trained two dictionaries having 325 and 625 number of
basis elements per video. We fix the sampling strategy to have
a continuous bump.
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Fig. 3: Effect of Temporal Depth

Surprisingly, the smaller dictionary had a smaller RMSE
but the difference is not very large. Further experimentation is
required to ascertain the effects of the change in the number
of basis elements in the dictionary.

Increase in sparsity decreased the RMSE. It is expected to
saturate as the sparsity is increased further. The trends for the
training and test data are shown in figure 4.

Fig. 4: Effect of Sparsity and number of Basis Elements

G. Patch Size and Stride

We fix the sampling strategy to have a continuous bump.
We use a dictionary with 625 basis elements per video.

The decrease in stride decreases the RMSE because of more
overlap between neighboring patches. The patchiness in the
video reconstructed is also less.

Increasing patch size decreases the RMSE because each
patch captures more information. However, this trend of
RMSE with patch size is expected to saturate unless the
number of basis in also increased. The results can be seen
in figure 5.

Fig. 5: Effect of Patch Size and Stride

H. Sampling Strategies

We finally compare the sampling strategies. We construct a
dictionary with 625 basis elements per video. The patch size
is 8× 8 and the stride is 4.

We observe that the random sampling strategy performs
the worst. This happens because the number of points where
the information is getting collected may be much less than
bump length times the number of pixels. Some of the spatial
locations may not be sampled at all anywhere in their temporal
depth, leading to complete loss of information.

Distributed bump strategy performs the best. It is a pseudo-
random policy with an important constraint. For each pixel,
the number of time instants where information is captured
equals the bump length. The requirement for continuity of
bump length is relaxed. The trends can be observed in figure
6.

VI. CONCLUSION

This method, that we have experimented with in this project,
can reconstruct the videos with high temporal resolution with-
out compromising on spatial resolution, though some artifacts
are visible, most likely because of smaller dictionary size that
we have used. We observed the effect of changing different
hyper-parameters. We also observed that distributed bump
sampling produces the best results, but this has to be at the
cost of increased hardware complexity.
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Fig. 6: Performance of different sampling strategies
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