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Solution: Parallel AD convertors and frame buffers - incurs more cost! 

‘Thin-out’ mode (high speed draft): directly trades off the spatial resolution for higher 
temporal resolution and often degrades image quality

Overcome this tradeoff without incurring a significant increase in hardware costs.
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● Exploit the sparsity of natural videos through framework of compressed sensing
● Sampling: Sample space-time volumes while accounting for the restrictions 

imposed by imaging hardware
● Dictionary Learning: learning an over-complete dictionary from a large 

collection of videos, and represent any given video as a sparse, linear 
combination of the elements from the dictionary

● Dictionary captures moving edges
● Overcomplete dictionary leads to sparse representation of videos
● Reconstruction: Solve inverse problem to get coefficients of the video in the 

learnt dictionary basis



CMOS sensors with per pixel exposure, current architecture 
allows only a single bump (on-time) during one camera 
exposure.

Reconstruct all sub-frames from the coded snapshot

K-SVD used to learn a over-complete dictionary basis which 
allows sparse representation of videos in the dictionary basis.

Recover the space-time volume from a single captured image. 
Use the learned dictionary and sampling matrix to get all 
subframes by using OMP for sparse signal recovery.
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- Binary shutter: Each pixel either collecting light or not at every instant
- Single bump exposure: only one continuous ‘on’ time
- Fixed bump length: for all pixels, limited dynamic range of sensors



Coded Sampling

Hardware restrictions

- Binary shutter: Each pixel either collecting light or not at every instant
- Single bump exposure: only one continuous ‘on’ time
- Fixed bump length: for all pixels, limited dynamic range of sensors

Coded image is 

Where E(x, y, t)  is space time volume, S(x, y, t) is per pixel shutter function

For conventional capture,  S(x, y, t) = 1 for all x, y, t.
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Dictionary Learning

where 

                                                                    is the sparse vector coefficient

 are the dictionary elements

Algorithm used: K-SVD

No. of training videos: 20, rotated in 8 directions

Finally, dictionary elements from all images are appended.
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Sparse Reconstruction

Combining sampling and coded mage equation s in a vector form we have

Estimate of the coefficient vector is given by

OMP is used to find these estimates!

The space-time volume is computed as



K-SVD

Objective function:

where Y is the observed data, D is dictionary to be learnt and X is a T
0
 sparse vector.

Alternating minimization is used as follows:

1. Keeping dictionary fixed, find the sparse representations using OMP.
2. Using these sparse representations, update one column at a time:

Find SVD of the error matrix corresponding to the data-points that have 
non-zero coefficient corresponding to the current column.

Replace dictionary column by first left singular vector, update corresponding 
coefficients by first right singular vector scaled by first singular value.



K-SVD

Objective function:

where Y is the observed data, D is dictionary to be learnt and X is a T
0
 sparse vector.

Alternating minimization is used as follows:

1. Keeping dictionary fixed, find the sparse representations using OMP.
2. Using these sparse representations, update one column at a time:

Find SVD of the error matrix corresponding to the data-points that have 
non-zero coefficient corresponding to the current column.

Replace dictionary column by first left singular vector, update corresponding 
coefficients by first right singular vector scaled by first singular value.



K-SVD

Objective function:

where Y is the observed data, D is dictionary to be learnt and X is a T
0
 sparse vector.

Alternating minimization is used as follows:

1. Keeping dictionary fixed, find the sparse representations using OMP.
2. Using these sparse representations, update one column at a time:

Find SVD of the error matrix corresponding to the data-points that have 
non-zero coefficient corresponding to the current column.

Replace dictionary column by first left singular vector, update corresponding 
coefficients by first right singular vector scaled by first singular value.



K-SVD

Objective function:

where Y is the observed data, D is dictionary to be learnt and X is a T
0
 sparse vector.

Alternating minimization is used as follows:

1. Keeping dictionary fixed, find the sparse representations using OMP.
2. Using these sparse representations, update one column at a time:

Find SVD of the error matrix excluding contribution from chosen column 
corresponding to the data-points that have non-zero coefficient corresponding 
to the current column.

Replace dictionary column by first left singular vector, update corresponding 
coefficients by first right singular vector scaled by first singular value.



Constraints in the current system

● Maximum temporal resolution of the over-complete dictionary has to be 
pre-determined. To reconstruct videos at different temporal resolutions, we 
have to train different dictionaries.

● The hardware setup requires precise alignment of the camera. Artifacts due to 
imperfect alignment.

● Both dictionary learning and video reconstruction require a lot of time. Not 
suitable for real time applications.
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List of Experiments

Observe the effect of following parameters on the reconstruction error

● Bump length
● Noise in the coded image
● Assumed sparsity of the videos in the dictionary basis
● No. of elements on the dictionary
● Patch size
● Stride
● Different sampling schemes



Details of Experiments

For each experiment, all but few (one or two) parameters are fixed:

● Temporal depth = 36
● Image height = 160
● Image width = 320
● Sparsity = 40
● Number of Videos = 20
● Bump Length = 3
● Number of basis per video segment = 625
● Patch size = 8
● Stride = 4



Effect of noise variance and bump length

As bump length is increased from 1 to 5, reconstruction gets better. After a point 
increase in bump length (towards S(x,y,t)=1) is expected to increase RMSE.

As noise variance is increased RMSE increases in almost linear fashion.



Effect of different sampling schemes

● Continuous bump: as per the hardware restrictions
● Random sampling: worst performance, as some spatial location may not be captured at all
● Distributed bump: Random within spatial location (continuity of bump relaxed) gives best 

RMSE



Effect of temporal depth

RMSE increases with temporal depth as expected since the number of elements to be 
recovered increases  with same amount of evidence.



Effect of sparsity

325 basis per video segment are observed to produce better reconstruction on the 
training set. For test, the results are chaotic.

Increasing sparsity reduces RMSE as expected.



Effect of patch size and stride

● Decreasing stride decreased the RMSE because of more overlap between neighbouring patches.
● Increasing patch size decreases the RMSE because each patch captures more information.
● Trend of RMSE with patch size is expected to saturate unless the number of basis in also increased.
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Conclusions

● The proposed method can reconstruct the videos with high temporal resolution 
without compromising on spatial resolution. But artifacts are seen.

● Effect of noise is as expected. Increasing bump length results in better 
reconstruction when bump lengths are small, but an optimal bump length less 
than 36 is expected.

● Distributed bump sampling produces best results, but this has to be at the cost of 
increased hardware complexity (randomness is cool, provided each spatial 
location in captured in the coded image).

● Increase in RMSE with temporal depth is as expected as we are trying to recover 
larger spatio-temporal volume from fixed number of measurements.
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Conclusions

● 325 basis per videos were preferred  than 625 videos. This is a surprising 
observation since the paper report using even bigger dictionary.

● Increasing sparsity upto 120 results in better video reconstruction.
● Increasing patch size helps capture more information in the basis, increasing the 

RMSE.
● Reducing stride makes patches overlapping. Thus, the artifacts are reduced and 

reconstruction is better.



THE END


