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Problem Statement

Motivation: For medical images - useful for processing (segmentation/ registration
etc) in presence of lesions (suffered part)

Semantic image inpainting: large missing regions have to be filled based on the
available visual data

¥

) Inpainting

Extracting information from single image loses out on high level context leading to
poor results. So we use a deep generative model!



Overview of the approach

e (enerate the missing content by conditioning on the available data.

e Use generative models (like GANs) with a generator which act as a mapping from
latent space to images.

e For inpainting, find closest encoding of the corrupted image in latent space using
context loss and prior loss.

e Pass the encoding through the generative model to infer missing content.

e Blend the predicted patch intensities to have coherence with surrounding
known pixel intensities using blending.



Advantages of the approach

e I[nference is possible independent of the structure of missing content.

e Requires no knowledge about shape and size of corrupted patches while training
the model.

e Have provided realistic state of the art results on face images.



Generative Adversarial Network (GAN)
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Training a GAN

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images
Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min e [Esrp,yi. 108 D, () + Exv(o) 108(1 ~ Do, (Go, ()]
g d L J

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (6 ) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)



Importing GAN setup for inpainting

e Generator G and discriminator D
are trained with uncorrupted

data.
e After training, the generator G is HD_,H—D__»D
able to map a point z drawn from G‘é')

p, and generate an image
mimicking samples from pdata.



Importing GAN setup for inpainting

e Assumption: G is efficient in its
representation then an image that

is not from p, _(e.g., corrupted
data) should not lie on the H@—'H—Q—’D
learned encoding manifold z. GZ)
e Aim torecover the encoding zZ
“closest” to the corrupted image

while being constrained to the
manifold



Optimization Problem and Loss Terms

Optimization problem: y is the
corrupted image, M is the binary
mask.
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Optimization Problem and Loss Terms

Optimization problem: y is the
corrupted image, M is the binary

mask.
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ﬁc is the context loss: constrains the
generated image given the input corrupted
image y and the hole mask M



Optimization Problem and Loss Terms

Optimization problem: y is the

6L
corrupted image, M is the binary -
mask.
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Weighted Context Loss

e L, lossoveruncorrupted part: equal
importance to all pixels.

e Importance of an uncorrupted pixel
should depend on the number of
corrupted pixels surrounding it.

e A pixel thatis very far away from any
hole should play very little role in the
inpainting process.



Weighted Context Loss

e /(i) importance of pixel location i.

e /N(i)/ cardinality of set of neighbors 3 A-M;) if M, £
of pixel i in a local window. W, =

According to the paper, empirically L, loss
is slightly better! Lc(zly,M) =W (G(z) —y)l



Prior Loss

Penalties based on high-level image feature representations instead of pixel-wise
differences.

Recovered image should be similar to the samples drawn from the training set.

Since D is trained to differentiate generated images from real images...

Hence the prior loss is taken identical to the GAN loss for training the discriminator D
Ly(z) = Aog(1 — D(G(z)))

Here, A is the balancing parameter between the two losses.



Inpainting
e LetZbe closest z in latent space based on the prior and context loss.

e We can overlay uncorrupted pixels on G(Z).

o Bllt, predicted pixels may not exactly preserve the same intensities of the

surrounding pixels, although the content is correct and well aligned.

e Solution: Poisson Blending



Poisson Blending

Instead of keeping the intensity from the generated image, use the gradients of G(Z) to
preserve image details!

o110
I [-4] |
o110

% = argmin | Vx — VG(2)|.2,

st.x;, =y; for M; =1

the Laplace filter

Equivalent to minimizing the norm of difference of Laplacians of x and G(2)!

And it has a unique solution!



Variational Autoencoders

Sample z from z|:c ~ N(uz|m, > 2l Sample x|z from sc|z ~ N(,uw|z, Yzz)
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Variational Autoencoders

Maximize
likelihood of Sample x|z from :I:|z ~ N(Ha;|z, 2w|z)

original input /
being \

E. [logpo(x(i) | z)] — Dir(gs(2 | ) || po(2)) reconstructed K|z Zmlz

L(z@r, 0,0) Decoder network \/
po(x|z)
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Importing VAE setup for inpainting

L, Priorloss: //z][?

penalty on hidden representation vector being away from assumed prior
distribution (standard normal distribution)

L. Contextloss: Same as before

L norm of weighted perpixel difference



Experiments



Comparison of GANs and VAEs with
convolution kernels of size 3 and 7



Original Masked GAN3 GAN7 VAE3 VAE7
PSNR =26.931 PSNR =26.8502 PSNR =27.5088 PSNR =30.2943

PSNR =19.3789 PSNR =23.397 PSNR =22.8927 PSNR =23.1043

PSNR =21.8505 PSNR =22.2165 PSNR =25.6269 PSNR =24.8162

Inpainted images are visually almost indifferentiable...



Masked
Original GAN3 GAN7 VAE3 VAE7

PSNR =26.931 PSNR =26.8502 PSNR =27.5088 PSNR =30.2943
[
=

PSNR =19.3789 PSNR =23.397 PSNR =22.8927 PSNR =23.1043

PSNR =21.8505 PSNR =22.2165 PSNR =25.6269 PSNR =24.8162




Original Masked GAN3 GAN7 VAE3 VAE7
SSIM =0.68874 SSIM =0.59664 SSIM =0.70322 SSIM =0.79873

SSIM =0.33956 SSIM =0.52301 SSIM =0.51723 SSIM =0.53246

SSIM =0.556 SSIM =0.5838 SSIM =0.79384 SSIM =0.77115

Significantly better results for VAEs than GANSs!
Similar trend with PSNR as well as SSIM measure.



Original Masked GAN3 GAN7 VAE3 VAE7
PSNR =26.4462 PSNR =24.0594 PSNR =26.723 PSNR =27.0105

PSNR =27.6258 PSNR =28.4821 PSNR =28.7554 PSNR =28.5177

Missing tail is almost fully recovered!

PSNR =22.8229 PSNR =21.6126 PSNR =23.0421 PSNR =22.8702




Original Masked GAN3 GAN7 VAE3 VAE7
SSIM =0.62224 SSIM =0.55705 SSIM =0.66736 SSIM =0.70196

SSIM =0.85146 SSIM =0.8468 SSIM =0.87746 SSIM =0.87233

SSIM =0.62316 SSIM =0.6512 SSIM =0.77935 SSIM =0.80047

Able to inpaint any part of any slice of the brain irrespective of the patch size!



Comparison of GANs and VAEs with
large masks and kernel sizes 3 and 7



Original Masked GAN3 GAN7 VAE3 VAE7
PSNR =21.6077 PSNR =20.3777 PSNR =22.4814 PSNR =26.7773

PSNR =28.3773 PSNR =32.2441 PSNR =26.6105

With larger patches, some fold structure is observed to be missing!



Original Masked GAN3 GAN7 VAE3 VAE7
SSIM =0.63602 SSIM =0.5984 SSIM =0.60675 SSIM =0.81044

SSIM =0.65301 SSIM =0.67337 SSIM =0.83816 SSIM =0.5761




Original Masked GAN3 GAN7 VAE3 VAE7
PSNR =27.162 PSNR =26.7737 PSNR =29.5566 PSNR =25.2954

PSNR =22.8544 PSNR =22.826 PSNR =18.2958 PSNR =24.456

PSNR =19.3896 PSNR =22.5346 PSNR =26.0538 PSNR =26.0727

Almost completely occluded images recovered reasonably well!



Original Masked GAN3 GAN7 VAE3 VAE7
SSIM =0.68991 SSIM =0.65157 SSIM =0.82872 SSIM =0.6728

SSIM =0.599 SSIM =0.60846 SSIM =0.31587 SSIM =0.73153

SSIM =0.58358 SSIM =0.60203 SSIM =0.80166 SSIM =0.80108

VAEs continue to perform better, even with larger patches.



VAE 7 : Demonstrating effect of prior loss,
weighted context loss and blending



Original Masked VAE 7 No Prior Not Weighted No Blending
PSNR =30.2943 PSNR =30.1952 PSNR =26.7008 PSNR =28.7574

PSNR =23.1043 PSNR =21.4802 PSNR =22.0295 PSNR =18.8319

PSNR =24.8162 PSNR =18.5084 PSNR =17.5132 PSNR =19.0717

Prior, Weighted loss and blending all improve the result quality!



Original Masked VAE 7 No Prior Not Weighted No Blending
SSIM =0.79873 SSIM =0.80842 SSIM =0.62075 SSIM =0.74132

SSIM =0.53246 SSIM =0.49463 SSIM =0.47677 SSIM =0.2491

SSIM =0.77115 SSIM =0.32527 SSIM =0.22073 SSIM =0.18315

Patch structure visible when blending is not used - discontinuity along patch boundary



Original Masked VAE 7 No Prior Not Weighted No Blending
SSIM =0.70196 SSIM =0.45474 SSIM =0.55645 SSIM =0.22584

SSIM =0.87233 SSIM =0.54799 SSIM =0.74754 SSIM =0.56561

SSIM =0.80047 SSIM =0.80587 SSIM =0.70719 SSIM =0.65459




Original Masked VAE 7 No Prior Not Weighted No Blending
PSNR =27.0105 PSNR =23.3548 PSNR =24.3665 PSNR =19.3409

PSNR =28.5177 PSNR =20.108 PSNR =24.5224 PSNR =20.6834

PSNR =22.0877 PSNR =22.1622




GAN 3: Effect of prior loss



Original Masked GAN 3 No Prior
PSNR =26.931 PSNR =26.1286

PSNR =19.3789

PSNR =21.8505 PSNR =21.5511




Original Masked GAN 3 No Prior
SSIM =0.68874 SSIM =0.62326

SSIM =0.36738

SSIM =0.33956

SSIM =0.556




Original Masked GAN 3 No Prior
PSNR =26.4462 PSNR =25.1458

PSNR =27.6258

PSNR =22.8229 PSNR =20.9988




Original Masked GAN 3 No Prior
SSIM =0.62224 SSIM =0.56845

SSIM =0.85146

SSIM =0.62316 SSIM =0.60044




Conclusions

e VAE worked better than GAN in most cases. Why?
o VAE is directly trained on real images.
o VAE realizes three clusters faster!
o Trained in 25% less epochs, each consumed 25% less time. VAEs are 78%
faster to train! Improvement over method used in the paper.
o Maybe, GANs are better than VAEs on face data though.
e We also confirmed the importance of
o Prior loss
o Weighted context loss
o Blending

e Advantage due to prior loss more clearly observed in VAEs than GANs.



