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Abstract—Undersampled reconstruction in resting functional
magnetic resonance imaging (R-fMRI) holds the potential to en-
able higher spatial resolution in brain R-fMRI without increasing
scan duration. We propose a novel approach to reconstruct k-
t undersampled R-fMRI relying on a deep convolutional neural
network (CNN) framework. The architecture of our CNN frame-
work comprises a novel scheme for R-fMRI reconstruction that
jointly learns two multilayer CNN components for (i) explicitly
filling in missing k-space data, using acquired data in frequency-
temporal neighborhoods, and (ii) image quality enhancement in the
spatiotemporal domain. The architecture sandwiches the Fourier
transformation from the frequency domain to the spatial domain
between the two aforementioned CNN components, during, both,
CNN learning and inference. We propose four methods within our
framework, including a Bayesian CNN that produces uncertainty
maps indicating the per-voxel (and per-timepoint) confidence
in the blood oxygenation level dependent (BOLD) time-series
reconstruction. Results on brain R-fMRI show that our CNN
framework improves over the state of the art, quantitatively and
qualitatively, in terms of the connectivity maps for three cerebral
functional networks.

Index Terms—R-fMRI reconstruction, k-t undersampling, deep
convolutional neural network, k-space filling, image quality en-
hancement, Bayesian modeling, uncertainty.

I. INTRODUCTION AND RELATED WORK

Resting-state functional magnetic resonance imaging (R-
fMRI) [1, 2] enables the estimation of functional connectiv-
ity [3] in subjects who may be unable to perform explicit tasks
during fMRI. While typical resting-state blood-oxygen-level-
dependent (BOLD) signal time-series comprise frequencies less
than 0.1 Hz [4], typical R-fMRI uses much higher temporal
sampling rates to overcome large physiological fluctuations
and noise that corrupt the weak signal, at the cost of spatial
resolution. Cerebral cortical studies acquire R-fMRI with large
(8–64 mm3) voxels [5], when the cortex is 3–4 mm thick.
To increase spatial resolution [6], within the same scan time,
undersampled reconstruction methods are vital.

Some methods speedup R-fMRI acquisition using advanced
pulse sequences [7, 8] and parallel imaging [9]. Other methods
undersample in k-space and reconstruct using prior models like
low-rank [10] or sparsity [6, 11, 12]. While non-Cartesian k-
space undersampling [13, 14] can lead to artifacts, we under-
sample line encodes in k-space with temporal undersampling.
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Recent methods [15, 16] do k-t undersampled reconstruction
using robust dictionary priors on the R-fMRI signal. In con-
trast, we propose a novel convolutional neural network (CNN)
framework to reconstruct R-fMRI from k-t undersampled data
(the first such approach, to the best of our knowledge).

Recent reconstruction methods use deep neural networks
to reconstruct undersampled (spatial) structural MRI [17]–
[23], but not (spatiotemporal) fMRI. [18] uses a CNN with a
consistency loss coupled with a sparsity loss. [19] uses a CNN
with data-consistency and data-sharing layers for dynamic
MRI, but not R-fMRI that has much weaker signals and 10–
20× more timepoints. [20] maps the zero-filled inverse-Fourier
transformed image (low quality) to a reconstructed image
(higher quality) using a UNet based architecture. [21] uses
an encoder-decoder framework where the encoder maps the
measured data to a low-dimensional manifold that feeds into the
decoder. Model-based deep learning (MoDL) [22, 24] employs
a CNN in an end-to-end framework for reconstructing structural
MRI and diffusion MRI starting with a zero-filled Fourier-
inverse reconstruction and then using an iterative procedure
for spatiotemporal reconstruction. In contrast, our framework
is a one-shot end-to-end framework that first fills in the
missing k-space values and then enhances the image in the
spatiotemporal domain. [25] explores Bayesian modeling for
reconstructing cardiac MRI. Robust artificial-neural-networks
for k-space interpolation (RAKI) [26, 27] extends GRAPPA
using per-subject nonlinear-CNN learning using ACS data.
Unlike these methods, we propose a compact CNN framework
for zero-shot spatiotemporal R-fMRI reconstruction from k-t
undersampled data with end-to-end learning.

Apart from reconstruction problems, some recent work uses
CNN models in other applications of fMRI. [28] and [29] use
3D-CNN for classification of autism spectrum disorder and
diagnosis of Schizophrenia respectively. [30] learns a spatio-
temporal network to predict patterns of the default-mode-
network map in an fMRI scan.

This paper makes several contributions. We propose a three-
stage CNN architecture, with end-to-end learning, where (i) the
first stage uses a CNN learned to fill in missing k-space
data using acquired data in frequency-temporal neighborhoods,
(ii) then includes a Fourier inverse to transform the data to
the spatial domain, and (iii) finally uses a CNN learned for
image quality enhancement in the spatiotemporal domain. We
propose Bayesian deep learning with uncertainty estimation as
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Fig. 1: R-fMRI Undersampling Scheme in k-space + time.

well as a loss function to make CNN learning robust to large
physiological fluctuations typical in R-fMRI. Results on brain
R-fMRI show that our CNN framework leads to significantly
improved functional-network estimates over the state of the art.

II. METHODS

A. Mathematical Notation

On the spatiotemporal domain of a subject undergoing R-
fMRI, let the random field X model the R-fMRI BOLD
signals, along with the MRI phase component that makes the
resulting signal complex-valued, in a 2D brain slice within the
(transaxial) acquisition plane. Let the 2D image comprise r
rows and c columns, over T timepoints. Let Xt be the r × c
image at timepoint t ∈ [1, T ]. Let Xv ∈ CT denote the time-
series at voxel v. Let Xtv ∈ C be the BOLD signal, along
with the complex phase component, at voxel v within Xt.
Let the mathematical operator F2 be the 2D discrete Fourier
transform (DFT). Let mathematical operators < and = extract
the real and imaginary parts of a complex-valued variable. Let
3D random field U be the k-space representation of image X ,
where Ut := F2Xt is the representation at timepoint t. Let
Utf ∈ C be the k-space representation at frequency f within
Ut. Note that U does not model the observed / acquired data
that may be corrupted because of the noise introduced while
measuring the k-space signals.

B. R-fMRI Undersampling Scheme in k-space and Time

We propose to undersample the R-fMRI acquisition in both
k-space and time (Figure 1). Let the mathematical operator
St model the k-space subsampling pattern during acquisition
at timepoint t; St can also model temporal undersampling
when no k-space values are acquired at t. Let Y model
the acquired undersampled and corrupted data, which is a
subsampled version of U corrupted with independent zero-
mean Gaussian noise of variance σ2. To undersample in time,
we acquire k-space data Yτ for a regularly-sampled subset
of timepoints τ ∈ [1, T ] with integer spacing ∆T ≥ 2,
i.e., {τ = 1, τ = 1 + ∆T, · · · , τ = T} (Figure 1). This
paper uses ∆T := 4, resulting in 4× temporal undersampling.
Subsequently, for those timepoints τ for which k-space data
is acquired, we propose to undersample k-space as follows.
First, within the central low-frequency region of the k-space,
we acquire full readout lines, producing data Yτ (Figure 1).
Second, we undersample the remaining k-space regions by ac-
quiring only a subset of the readout lines at locations uniformly

randomly drawn within those regions, producing data
←−
Yτ and−→

Yτ in the lines sampled on either side of Yτ (Figure 1). For such
timepoints τ , this paper undersamples k-space by 2×. Thus, for
frequencies f where data is acquired, Yτf := Uτf+σ2η, where
η is a standard complex-valued normal random variable.

C. CNN Framework to Reconstruct k-t Undersampled R-fMRI

1) CNN Input: We pass the zero-filled k-space data matri-
ces, for all timepoints τ for which at least some k-space data
is acquired, as the input to the CNN. Thus, for frequencies
f where data is missing, we set Yτf := 0 and pass the
resulting (zero-filled temporally-undersampled) Y as the input
to the CNN. This strategy enables the framework to adapt to
different instances of random undersampling patterns, as long
as the undersampling pattern in test-set also belongs to the
same distribution of random patterns used during training.

2) CNN Architecture – Stage 1: The first stage of the
CNN framework (Figure 2(a)) takes the sequence of zero-filled
k-space data matrices {Yτ}τ=1,1+∆T,··· ,T , which continues to
be undersampled in time, and learns a nonlinear mapping
φ(·;α), parameterized by CNN weights α, to fill the missing
k-space data within each Yτ . The mapping φ(·;α) uses a
combination of two mappings

←−
φ (·;←−α ) and

−→
φ (·;−→α ), where

the set of weights α := ←−α ∪ −→α . The mappings
←−
φ (·;←−α ) and−→

φ (·;−→α ) take as arguments the temporally-undersampled zero-
filled data

←−
Y τ and

−→
Y τ , respectively, and map those to produce

(i)
←−
φ (
←−
Y τ ;←−α ) and (ii)

−→
φ (
−→
Y τ ;−→α ). The combination of Y τ

along with the mapped outputs
←−
φ (
←−
Y τ ;←−α ) and

−→
φ (
−→
Y τ ;−→α )

produce an estimate of the full k-space data φ(Yτ ;α) at the
sampled timepoints as shown in Figure 2(a). The mappings←−
φ (·) and

−→
φ (·) models the complex-valued input

←−
Y τ as a 2-

channel matrix with channels <
←−
Y τ and =

←−
Y τ . Figure 2(d)

visually depicts the details of the CNN architecture of this
stage. The output of this stage is Φ(Y ;α) := {φ(Yτ ;α) : ∀τ}.

3) CNN Architecture – Stage 2: The framework now takes
the temporal sequence of estimated full-k-space 2D matrices
φ(Yτ ;α) through 2D inverse DFTs F−1

2 to produce low-quality
R-fMRI reconstructions F−1

2 φ(Yτ ;α) at timepoints τ (not all
t ∈ [1, T ]). Let the mathematical operator F−1 model the se-
quence of inverse 2D DFTs across τ . The resulting temporally-
undersampled R-fMRI is F−1Φ(Y ;α) (Figure 2(b)). The CNN
then temporally upsamples F−1Φ(Y ;α) to estimate the R-
fMRI images at timepoints (other than τ ) for which k-space
data was entirely missing. We use linear interpolation, along
the temporal dimension, to keep the computational cost low. Let
the mathematical operator U model the temporal upsampling.
The resulting low-quality R-fMRI image UF−1Φ(Y ;α) feeds
into the third stage of the CNN framework.

4) CNN Architecture – Stage 3: The third stage (Figure
2(c)) of the CNN takes the low-quality complex-valued R-fMRI
image UF−1Φ(Y ;α) through a multilayer nonlinear mapping
Ψ(·;β), parameterized by weights β, to map it to a posterior
PDF on the high-quality reconstructed R-fMRI images. The
CNN models this PDF in a factored form over all voxels v
and timepoints t. These factors are parameterized by univariate
Gaussians with real-valued means ΨM (UF−1Φ(Y ;α);β) and
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Fig. 2: Our Convolutional Neural Network Framework. The end-to-end CNN framework has 3 stages where (i) the first stage
fills in missing k-space data, (ii) the second stage applies the inverse Fourier transform and performs temporal interpolation and
(iii) the last stage performs spatiotemporal image quality enhancement. All variants are described in Section II-E.

positive real-valued standard deviations ΨS(UF−1Φ(Y ;α);β).
Figure 2(e) visually depicts the details of architecture of this
stage. The complex-valued image UF−1Φ(Y ;α), modeled as
a two-channel (real and imaginary) image, passes through a
sequence of convolution+ReLU layers to produce the output
Ψ(·;β). Output Ψ(·;β) has two channels which are denoted
by Ψ1(·;β) and Ψ2(·;β), each one is real-valued and is of
the same size as the R-fMRI image X . We use Ψ1 to obtain
the magnitude of the output R-fMRI reconstruction and Ψ2 to
obtain the standard deviation (at each voxel at each time step)
corresponding to the R-fMRI reconstruction. We introduce
a skip-connection mapping that takes the magnitudes of the
complex values in the input UF−1Φ(Y ;α) and adds them
to Ψ1(·;β) producing ΨM (·;β). Thus, Ψ1(·;β) effectively
models the residual mapping. To ensure that the standard
deviations in ΨS(·;β) are positive valued, we model these
by an element-wise exponentiation of the values produced by
Ψ2(·;β). The convolution kernels in Ψ1(·;β) and Ψ2(·;β)
have the same design as those used in Φ(·;α). The out-
put of the Bayesian-modeling based CNN is the factored
Gaussian PDF on reconstructed R-fMRI images given by the
means in ΨM (UF−1Φ(Y ;α);β) and the standard deviations
in ΨS(UF−1Φ(Y ;α);β).

For a CNN without Bayesian modeling, i.e., in the typical
style, we propose to eliminate the mapping Ψ2(·;β) such
that ΨM (·;β) is the same as the R-fMRI reconstructed image
Ψ(·;β) finally output by the CNN framework.

D. CNN Loss Functions

We construct the training set as follows. We start with
fully-sampled high-quality R-fMRI BOLD signals for N slices
{Xn}Nn=1 across several subjects. Given Xn, we generate
acquired k-space data Y n by (i) undersampling Xn in time
to give {Xn

τ : ∀τ}, followed by (ii) undersampling each
F2X

n
τ in k-space and introducing noise to give Y nτf . We

use {(Xn, Y n)}Nn=1 for learning. We design loss functions to
penalize the mismatch between the original image Xn and the

(PDF on) reconstructed R-fMRI image output by the CNN. We
propose three loss functions as follows.

1) Mean-Squared-Error Loss: The typical formula-
tion for the optimization problem in this context is
arg minα,β

∑N
n=1 ‖Xn − Ψ(UF−1Φ(Y n;α);β)‖22. We find

that we can improve the stability of the learning and lead to
faster convergence by also penalizing the error between the
inverse DFT of the k-space filled outputs F−1

2 Φ(Y nτ ;α) and
Xn
τ for the subset of timepoints τ where k-space data was

acquired leading to the modified optimization problem:

arg min
α,β

(1− λ)

N∑
n=1

‖Xn −Ψ(UF−1Φ(Y n;α);β)‖22

+λ

N∑
n=1

∑
τ

‖Xn
τ −F−1

2 Φ(Y nτ ;α)‖22, (1)

where λ ∈ (0, 1) balances the two terms and is a free parameter
that we train using cross validation.

2) Robust Loss: Because the R-fMRI image X can get
corrupted with heavy-tailed physiological noise, we can re-
place the usual mean-squared-error penalty (stemming from a
Gaussian model on the residuals) by the p-th power of the
Frobenius norm, where p ≤ 2 is a free parameter. In more
general terms, the extra parameter p allows the training to adapt
to a non-Gaussian PDF for the residual magnitudes between the
CNN outputs and the fully-sampled images X used for training.
Thus, we propose the CNN learning formulation as

arg min
α,β

(1− λ)

N∑
n=1

‖Xn −Ψ(UF−1Φ(Y n;α);β)‖p2,ε

+λ

N∑
n=1

∑
τ

‖Xn
τ −F−1

2 Φ(Y nτ ;α)‖p2,ε, (2)

where λ ∈ (0, 1) balances the two terms, and ‖ · ‖2,ε is
the ε-regularized norm defined for a matrix A as ‖A‖p2,ε :=∑V
v=1(‖Av‖22 +ε)p/2, where ε := 10−5 is a small constant that



makes the function differentiable. λ ∈ (0, 1) and p ∈ (0, 2) are
free parameters that we train using cross validation.

3) Loss Based on Bayesian Modeling: Assuming that the
ground truth X was drawn from a factored Gaussian PDF with
means in ΨM (UF−1φ(Y ;α);β) and standard deviations in
ΨS(UF−1φ(Y ;α);β), the posterior probability density of the
ground truth is given by

P(X|Y ) =

V∏
v=1

T∏
t=1

G(Xvt;[Ψ
M (UF−1Φ(Y ;α);β)]vt,

[ΨS(UF−1Φ(Y ;α);β)]vt), (3)

where G(·; a, b) is the Gaussian PDF (without robustness) with
mean a ∈ R and standard deviation b ∈ R+, and the notation
[·]vt denotes the value of the argument at voxel v and timepoint
t. Thus, we formulate the learning problem as maximizing
the posterior of the observed training set. Taking the negative
log likelihood of the objective function, the learning problem
reduces to

arg min
α,β

N∑
n=1

V∑
v=1

T∑
t=1

(Xn
vt − [ΨM (UF−1Φ(Y n;α);β)]vt)

2

(δ + [ΨS(UF−1Φ(Y n;α);β)]vt)2

+2 log(δ + [ΨS(UF−1Φ(Y n;α);β)]vt), (4)

where δ := 10−5 is a small constant to avoid numerical
errors during learning. During training, the per-voxel per-
timepoint standard deviations tend to be higher for those
spatiotemporal locations (vt) where the quality of the predic-
tions are poorer leading to larger residual magnitudes |Xn

vt −
[ΨM (UF−1Φ(Y n;α);β)]vt|. Indeed, in the aforementioned
case, a larger standard deviation keeps the first penalty term
smaller. On the other hand, the second penalty term keeps
a check on the standard deviations getting very large. Thus,
the standard deviations can lend themselves to be interpreted
as a measure of uncertainty (i.e., lack of confidence) in the
estimates of the reconstructed R-fMRI image values. Note that
robust loss and Bayesian loss make different assumptions on
the distribution of voxel magnitudes and we explore them
separately as different methods.

E. CNN Model Variations

We compare several models within our CNN framework for
reconstructing R-fMRI images from k-t undersampled acquisi-
tions. These are: (i) D-CNN: The deep CNN (D-CNN) model
uses four layers each in Φ and Ψ (see Figure 2). It excludes
the mapping ΨS(·;β). It uses the loss function described in
Section II-D1. (ii) RD-CNN: The robust deep CNN (RD-CNN)
model has the same architecture as the D-CNN. It uses the
robust loss described in Section II-D2. (iii) BD-CNN: The
Bayesian deep CNN (BD-CNN) model generalizes the D-CNN
model, as shown in Figure 2, by using both ΨM (·;β) and
ΨS(·;β). It uses the Bayesian-modeling based loss described in
Section II-D3. (iv) S-CNN: The shallow CNN (S-CNN) model
uses two layers in both Φ and Ψ. It excludes the mapping
ΨS(·;β). It uses the loss function described in Section II-D1.

F. CNN Parameters and Computational Aspects

Our CNN model is very compact in terms of the number
of layers in order to reduce the GPU-memory needs of storing
intermediate matrices across the layers of the CNN framework.
Our CNN model is also efficient in the number of parameters to
reduce the computational cost during learning / optimization.
The CNN framework has only around 3.3×105 parameters:
the 4 layers in Φ(·, α) used for k-space filling have 2×20×53

+ 20×20×53 + 20×20×53 + 20×2×53 convolution-kernel
parameters and 62 bias parameters, which are about the same
number as those in Ψ(·, β) used for image-quality enhance-
ment. All the R-fMRI scans are rescaled by a constant factor
to bring all inputs and outputs in the image domain within the
range [0, 2]. For all CNNs, we use the Adam optimizer [31],
with a learning rate of 10−3 and β = (0.9, 0.999).

III. RESULTS AND DISCUSSION

We empirically evaluate all the methods within our CNN
framework described in Section II-E, i.e., (i) S-CNN, (ii) D-
CNN, (iii) RD-CNN, and (iv) BD-CNN, to reconstruct brain R-
fMRI from data that is retrospectively undersampled in k-space
and time. First, we compare with two recent reconstruction
approaches for R-fMRI and one reconstruction scheme for
fMRI (which has much higher SNR compared to R-fMRI),
none of which employ neural networks: (i) RA-DICT: This
uses the robust data-adaptive sparse dictionary modeling for
R-fMRI in [15]. (ii) WAVE: This uses a sparse wavelet model
on the spatiotemporal fMRI signal, similar to the model in
[12]. (iii) LOWRANK: This uses a low-rank model on the
joint k-space and temporal domain for R-fMRI, similar to
the model in [10]. Further, to improve LOWRANK’s perfor-
mance, in the matrix of reconstructed k-space values, at the
locations where the k-space data was acquired, we replace
the reconstructed values by the original acquired values, as
suggested in [10]. RA-DICT and WAVE both use zero-filled
inverse-Fourier-transformed initialization. LOWRANK uses a
zero-filled k-space initialization, as in [10]. Second, we extend
a typical CNN-based dynamic-MRI reconstruction method [25]
(BDMRI, originally proposed for cardiac MRI), for R-fMRI
reconstruction. We use a 4-layer CNN (architecture same as
the third stage of our BD-CNN). The input to BDMRI [25] is
the Fourier-inverse of the zero-filled k-space data. We evaluate
the performance of all methods using mean structural similarity
(mSSIM) on three functional-network estimates, i.e., (i) dorsal
attentive network (DAN), (ii) executive control network (ECN),
and (iii) default mode network (DMN).

A. Results on Brain R-fMRI

To evaluate all methods, we use high-quality brain R-
fMRI from the Human Connectome Project (HCP) having
2×2×2 mm3 voxels and 1.4 Hz temporal sampling rate.
We evaluate input-image quality using a measure similar to
tSNR [32] that we call the gray-matter temporal SNR (GM-
tSNR), which we define as the average, over all the gray-matter
voxels, of the ratios of (i) the root-mean-square (RMS) of the
time series (because it gives a standard norm of the signal) to



(a) Truth (b) BD-CNN (c) RD-CNN

(d) D-CNN (e) S-CNN (f) BDMRI-T
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Fig. 3: Qualitative Results on Brain R-fMRI: DAN. DAN es-
timated from (a) original data; from fitted models using (b) BD-
CNN: mSSIM 0.93, (c) RD-CNN: mSSIM 0.92, (d) D-CNN:
mSSIM 0.93, (e) S-CNN: mSSIM 0.92, (f) BDMRI-T: mSSIM
0.92, (g) RA-DICT: mSSIM 0.91, (h) WAVE: mSSIM 0.85,
(i) LOWRANK: mSSIM 0.74; and from (j) 8× lower spatial
resolution of (a): mSSIM 0.82.

(a) Truth (b) BD-CNN (c) RD-CNN

(d) D-CNN (e) S-CNN (f) BDMRI-T

(g) RA-DICT (h) WAVE (i)LOWRANK (j) Low. Res.

Fig. 4: Qualitative Results on Brain R-fMRI: ECN. ECN es-
timated from (a) original data; from fitted models using (b) BD-
CNN: mSSIM 0.91, (c) RD-CNN: mSSIM 0.90, (d) D-CNN:
mSSIM 0.90, (e) S-CNN: mSSIM 0.91, (f) BDMRI-T: mSSIM
0.85, (g) RA-DICT: mSSIM 0.85, (h) WAVE: mSSIM 0.87,
(i) LOWRANK: mSSIM 0.77; and from (j) 8× lower spatial
resolution of (a): mSSIM 0.76.

(ii) the standard deviation of the time series. The GM-tSNR of
the HCP images averaged across 50 evaluation subjects is 76.1.
We do not simulate any additional physiological noise in the

(a) Truth (b) BD-CNN (c) RD-CNN

(d) D-CNN (e) S-CNN (f) BDMRI-T

(g) RA-DICT (h) WAVE (i)LOWRANK (j) Low. Res.

Fig. 5: Qualitative Results on Brain R-fMRI: DMN.
DMN estimated from (a) original data; from fitted models
using (b) BD-CNN: mSSIM 0.94, (c) RD-CNN: mSSIM
0.94, (d) D-CNN: mSSIM 0.94, (e) S-CNN: mSSIM 0.93,
(f) BDMRI-T: mSSIM 0.92, (g) RA-DICT: mSSIM 0.85,
(h) WAVE: mSSIM 0.86, (i) LOWRANK: mSSIM 0.83; and
from (j) 8× lower spatial resolution of (a): mSSIM 0.83.
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Fig. 6: Quantitative Results on Brain R-fMRI. Comparison
of all methods, through mSSIM boxplots over 50 evaluation-set
subjects and all functional-networks.

data. To simulate acquisition noise in k-space, we add complex
Gaussian zero-mean independent and identically distributed
(i.i.d.) noise of standard-deviation σnoise, such that the inverse-
Fourier-transformed R-fMRI image in the space-time domain
has a reduced GM-tSNR of 73.4.

Undersampling Strategies for Methods. Let Rk and Rt
be the undersampling factors in k-space and time, respectively,
such that the overall undersampling factor R = Rk ∗ Rt. We
evaluate all methods in their ability to enable an undersam-
pling of R = 8. We consider combinations of (Rk, Rt) as
(Rk = 8, Rt = 1), (Rk = 4, Rt = 2), (Rk = 8/3, Rt = 3),
and (Rk = 2, Rt = 4). We avoid the case of (Rk = 1, Rt = 8)



because this would make the temporal sampling frequency
smaller than the Nyquist sampling frequency of around 0.2 Hz.
We pick optimal combination for each method based on the
validation set. We find that the strong spatial regularization in
WAVE makes it quite insensitive to the combination of Rk and
Rt, unless we limit undersampling to purely in k-space with
Rk = 8 that would lead to poor-quality initializations using
zero-filled inverse-Fourier-transforms. Thus, we choose (Rk =
2, Rt = 4) for WAVE. We use (Rk = 2, Rt = 4) for RA-DICT
because its performance deteriorates for higher Rk possibly due
to the weak and indirect spatial regularization on the dictionary
coefficients. For BDMRI, a high Rk leads to poor-quality
inputs that are zero-filled inverse-Fourier-transforms, making
the DNN-learning more difficult. Thus, we extend BDMRI to
BDMRI-T where we employ an optimal combination of Rk
and Rt, and then perform zero-filled inverse-Fourier-transforms
for each acquired timepoint followed by temporal interpolation
to get the input to the DNN. We use (Rk = 2, Rt = 4) for
BDMRI-T as it leads to optimal performance. For our CNN-
based methods, i.e., S-CNN, D-CNN, RD-CNN, and BD-CNN,
we use (Rk = 2, Rt = 4) as if the data were sampled at
0.35 Hz, with R-fMRI frequencies ≤ 0.10 Hz still preserved, as
it leads to optimal performance. We use (Rk = 8, Rt = 1) for
LOWRANK because its performance deteriorates for Rt > 1
possibly due to the absence of measurements in entire rows of
the k-space×time data matrix.

Training, Validation, and Evaluation Datasets. We learn
our CNN models and BDMRI-T using a training set of 5
subjects of fully-sampled corrupted (i.e., with introduced noise)
HCP data. We learn the dictionary model within RA-DICT us-
ing the uncorrupted (without noise introduced) R-fMRI of the
same training subjects. We tune all free parameters underlying
all methods on a separate validation set of 5 subjects (different
from the training set) to maximize the mSSIM averaged over
subjects and networks. To evaluate the sensitivity of our results
to the choice of training and validation sets (as shown in
Section III-B later), we repeat this training 5 times, each time
using a completely new set of 5 subjects for training and 5
other subjects for validation. We evaluate the performance of
all CNN-based and baseline methods on a separate evaluation
set of 50 subjects, which has no overlap with any training set or
validation set. We estimate all resting-state functional networks
using seed-based normalized time-series cross-correlations in
the reconstructed image.

Qualitative and Quantitative Evaluation. Functional net-
work estimates from BD-CNN reconstructions are qualita-
tively closer to the ground-truth functional networks than all
other methods. Across the three connectivity networks over-
all (Figures 3–5), BD-CNN clearly performs better than all
the baselines. Compared to BD-CNN (Figures 3–5(b)), func-
tional networks estimated from RD-CNN (robust loss; without
Bayesian modeling; Figures 3–5(c)), D-CNN (without robust
loss; without Bayesian modeling; Figures 3–5(d)) and S-CNN
(less depth; without robust loss; without Bayesian modeling;
Figures 3–5(e)) show slightly inferior results qualitatively (with
lower mSSIM values). Functional-network estimates from RA-
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Fig. 7: Insensitivity of BD-CNN to Choice of Training
and Validation Sets. mSSIM Boxplots, over 50 evaluation-
set subjects and all functional networks, for BD-CNN learned
from 5 different training and validation sets (i.e., Set1, Set2,
Set3, Set4, Set5). The boxplots for baselines are as in Figure 6.

DICT (Figures 3–5(g)), and WAVE (Figures 3–5(h)) show more
undesirable artifacts and those from LOWRANK (Figures 3–
5(i)) show larger distortions in the shapes, compared to our
CNN-based models. For DAN, BDMRI-T reduces the intensity
of the indicated network regions (Figure 3(f)) compared to the
ground truth (Figure 3(a)), whereas our BD-CNN maintains it
(Figure 3(b)). ECN from BDMRI-T reconstruction (Figure 4(f))
has large distortions in the contrast and shape of the network
compared to the ground truth (Figure 4(a)), unlike our BD-
CNN (Figure 4(b)). BDMRI-T leads to reduced contrast in
DMN (Figure 5(f)) compared to the ground truth (Figure 5(a))
and our BD-CNN (Figure 5(b)). Our CNN-based methods
show good denoising ability along with faithful reconstructions,
as can be specially seen from the DAN and ECN estimates
from our CNN-based reconstructions (Figures 3(b)–(e), 4(b)–
(e)) that show better contrast than even the ground-truth DAN
and ECN (Figures 3(a), 4(a)). Our four CNN-based methods
show significantly higher mSSIM values compared to all the
baselines i.e. BDMRI-T, RA-DICT, WAVE, and LOWRANK,
over all three functional connectivity networks (Figure 6).
Comparing our different CNN-based methods, we find that
BD-CNN improves over all our other CNN-based methods.
Our CNN framework can be extended for multicoil R-fMRI
by reconstructing each channel separately, and then solving for
the underlying signal using methods like [33], [34].

B. Ablation Studies

We perform ablation studies on our proposed BD-CNN to
further analyze its use for R-fMRI reconstruction.

Sensitivity to Choice of Training and Validation Sets.
Results in III-A show that (i) our CNN-based methods are
preferable over the baselines, and (ii) within our CNN-based
methods, BD-CNN is preferable over others. We now evaluate
the sensitivity of BD-CNN to the choice of training sets and
validation sets. We train our BD-CNN model over 5 different
training and validation sets (all distinct from the evaluation set)
from the HCP data and show that BD-CNN is quite insensitive
to the choice of a specific training and validation set, with



(a) Data (b) Residual (c) Uncertainty ΨS(·)

(d) Data (e) Residual (f) Uncertainty ΨS(·)

(g) Data (h) Residual (i) Uncertainty ΨS(·)

Fig. 8: BD-CNN’s Uncertainty Visualization in Recon-
structed Cerebral BOLD Signals within Connectivity-
Network Regions. Original data, residual between origi-
nal data and zero-filled reconstruction, and per-voxel un-
certainty map (standard-deviation map ΨS(·)) respectively
in the (a),(b),(c) DAN region, (d),(e),(f) ECN region, and
(g),(h),(i) DMN region.

the distributions of mSSIM values, over the evaluation set,
remaining virtually unchanged (Figure 7).

Performance for Different Values of Free-Parameter
λ. We compare the performance of our D-CNN at different
values of λ, the balancing hyper-parameter in Equation 1. We
find that performance of our D-CNN deteriorates statistically
significantly as λ → 1, compared to scenarios where λ is
sufficiently less than 1. The average mSSIM (and standard
deviation for all functional networks and evaluation subjects)
for λ ∈ [0, 0.75] is 0.90 (0.03), and for λ = 1 is 0.88 (0.03); this
demonstrates the utility of the third stage of our architecture.
Thus, we propose to set the value of λ significantly less than
1. The hypothesis that the mSSIM values from λ ∈ [0, 0.75]
and from λ = 1 come from the same distribution leads to a
very low p-value (0.02 in a two-sample t-test; 0.005 in the two-
sample K-S test). Hence, λ ∈ [0, 0.75] can give good results.
We propose to set λ = 0.5, because it leads to reduced training
time in practice. We find that our other CNN-based methods
follow similar trends, with respect to λ, in performance and
training time.

Effect of Head Motion. We simulate head motion for
each subject during the 15-minute scan as described by the
model in [35] that rotates the head about the spine every
minute. We choose the rotation angle θ to generate realistic
head motion as suggested in [35], and add noise as described
in Section III-A. We reconstruct the R-fMRI from the k-
t undersampled (2× in k-space, 4× in time) and motion-
corrupted data. The average mSSIM (and standard deviation)
over all functional networks and evaluation subjects are (i) BD-

CNN: 0.90 (0.04), (ii) BDMRI-T: 0.87 (0.05), (iii) RA-DICT:
0.86 (0.06), (iv) WAVE: 0.86 (0.02), and (v) LOWRANK: are
0.79 (0.04). This shows that our BD-CNN performs better than
the baselines even for motion-corrupted acquisitions.

C. Uncertainty of Reconstruction in Cerebral BOLD Signals

Consistent with the general finding, in the literature [36], of
improved performance of Bayesian DNNs, compared to their
non-Bayesian counterparts, we find that our BD-CNN leads to
an increase in mSSIM values, averaging around 2–3%, over
RD-CNN, D-CNN, and S-CNN. Furthermore, our BD-CNN
outputs a PDF over the reconstructed images, parameterized
by a per-voxel mean and a per-voxel standard deviation.
While BD-CNN treats the mean values as estimates of the
reconstructed intensities, we can treat the standard-deviation
values as estimates of the relative uncertainty, between voxels,
in the reconstructed intensities. The artifacts introduced due
to k-space undersampling of the original data in the transax-
ial acquisition plane, are clearly seen in the residuals (Fig-
ures 8(b),(e),(h)) between the original data (Figures 8(a),(d),(g))
and the zero-filled reconstruction. The corresponding per-voxel
standard-deviation maps show higher values, and, thereby,
higher uncertainty, in the reconstructed cerebral BOLD time-
series forming spatial patterns (Figures 8(c),(f),(i)) that are
similar to those resulting from zero-filled reconstructions of
undersampled k-space data.

D. Enabling Higher Spatial Resolution in R-fMRI

Consider an R-fMRI image with lower spatial resolution,
e.g., 4×4×4 mm3 voxels at the same temporal sampling rate
of 1.4 Hz and for the same length of time as the HCP images
used in this manuscript. Consider that the scan acquires data
without any undersampling in k-space and time. Such data
will clearly lead to functional network maps of lower spatial
resolution (Figures 3–5(j)) even though the contrast is improved
over the ground truth (Figures 3–5(a)). Our BD-CNN method
can enable acquisition / reconstruction of R-fMRI images with
higher spatial resolution, e.g., with 2×2×2 mm3 voxels, at
the same temporal sampling rate and without increasing the
scan time over the low-resolution scan. Our BD-CNN results in
Section III-A utilize the same scan time as the fully-sampled (in
k-space and time both) low-spatial-resolution scan, by freeing
up time through 8× k-t undersampling (2× in k-space and 4×
in time) and using the freed-up time to acquire data at higher
spatial resolution. We then use our learned BD-CNN model to
reconstruct the required high-spatiotemporal-resolution volume
at each timepoint. Our CNN-based functional networks (Fig-
ures 3–5(b)) have much higher spatial resolution and mSSIM.
Unlike the network maps from low-spatial-resolution data,
which have improved contrast at the cost of spatial resolution,
our BD-CNN reconstructions maintain high spatial resolution
while improving the contrast.

We can extend the argument to a scenario where the voxel
size is reduced to 1×1×1 mm3. The 8× smaller voxels will
lead to an 8× reduction in signal strength per voxel per time-
point, which is akin to an 8× increase in noise level. BD-CNN



continues to perform well and better than the baselines even at
8× higher acquisition noise (8σnoise), such that average GM-
tSNR over all evaluation subjects reduces to 42.8. The average
mSSIM (and standard deviations) of all functional networks
over the evaluation set for 8× higher noise level are (i) BD-
CNN: 0.92(0.03), (ii) BDMRI-T: 0.89(0.04), (iii) RA-DICT:
0.80(0.07), (iv) WAVE: 0.86(0.05), and (V) LOWRANK:
0.79(0.04). This shows the potential for our CNN-based frame-
work to enable R-fMRI scans with higher spatial resolution
inspite of an 8× increase in noise level.

IV. CONCLUSION

We proposed a novel approach for reconstruction of k-t
undersampled R-fMRI, based on a novel multi-stage CNN
framework with end-to-end learning. We proposed four meth-
ods within our framework including a Bayesian CNN that
estimates the uncertainty of reconstructions. The computational
advantages of our framework include an efficient CNN archi-
tecture leading to low memory needs for GPU-based learning,
and fast inference of the order of a minute. Our CNN frame-
work improves the estimation of functional networks on brain
R-fMRI, and also provides some insights into reconstruction
quality through uncertainty maps. Results show that our CNN
framework can potentially enable (8×) higher spatial resolution
without compromising the temporal resolution and without
increasing the scan time. Future research directions include
exploring (i) schemes to enable the use of very large / complex
CNN models for R-fMRI reconstruction, because the space
complexity increases with model size, and (ii) feasible exten-
sions of the current framework that can leverage information
from spatially neighboring slices during reconstruction, thereby
enabling undersampling in the third spatial direction as well.
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M Akçakaya, “Deep-learning methods for parallel magnetic resonance
imaging reconstruction: A survey of the current approaches, trends, and
issues,” IEEE Signal Process. Mag., vol. 37, no. 1, pp. 128–140, 2020.

[24] H K Aggarwal, M P Mani, and M Jacob, “MoDL-MUSSELS: Model-
based deep learning for multishot sensitivity-encoded diffusion MRI,”
IEEE Trans. Med. Imag., vol. 39, no. 4, pp. 1268–1277, 2019.

[25] J Schlemper, D Castro, W Bai, C Qin, O Oktay, J Duan, A Price, J Hajnal,
and D Rueckert, “Bayesian deep learning for accelerated MR image
reconstruction,” in Machine Learning for Medical Image Reconstruction
Workshop at MICCAI, 2018, pp. 64–71.

[26] C Zhang, S Hosseini, S Weingartner, K Ugurbil, S Moeller, and M Ak-
cakaya, “Optimized fast gpu implementation of robust artificial-neural-
networks for k-space interpolation (RAKI) reconstruction,” PLOS ONE,
vol. 14, no. 10, pp. e0223315, 2019.
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