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Problem Setup
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Stochastic multi-armed bandit setting with N arms

Arm i yields mean reward μi

K arms pulled at time t: AK(t), set of cardinality K

Define

Simple regret after M time-steps: 

Pseudo Cumulative regret for M time-steps:

Goal: Minimize expected regret  
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Motivation for simple regret

Looking for oil drilling sites:

• N potential sites, can send out K teams 
at a time

• Canada, can only drill in summers, 
induces batch pulls

• Correlated rewards because oil 
distributes via diffusive processes

• Need to make decision in limited rounds 
(policy timeline)

• Simple regret because long term payoff 
matters
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http://www.canadianoilstocks.ca/investing-in-
drilling-companies/precision-drilling-map/



Motivation for cumulative regret

Advertisement targeting:

• N websites, can advertise on K websites 
at a time (marketing budget)

• Monthly ad contract induces batch pulls

• Correlated rewards: people visit related 
sites

• Correlated noise: common factors like 
recession

• Cumulative regret because selling ads is 
an ongoing process
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https://monishap.me/online-advertisement/



Aggressive Elimination for Top-k Arm
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Aggressive Elimination for Top-k Arm

6
Agarwal, Arpit, et al. "Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons." Conference on Learning Theory. 2017.



Perturbed Aggressive Elimination for Top-k Arm
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Perturbed Aggressive Elimination for Top-k Arm
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Perturbed Aggressive Elimination for Top-k Arm

9
Kim, Baekjin, and Ambuj Tewari. "On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems." 
arXiv preprint arXiv:1902.00610 (2019).



Perturbed Aggressive Elimination for Top-k Arm
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Coins with high rewards are sampled more

11Average Reward of Coin
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We sample much less

12Increasing average reward
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Perturbation Amplitude controls Exploration-Exploitation Tradeoff



Gaussian Processes
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Gaussian Processes (GP) define distributions over functions.

Mean of function distribution:

Covariance kernel:

Smoothness assumption encoded in kernel:
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Samples for a smooth and rough kernel



Gaussian Processes Regression
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Data samples                        , new inputs

Joint distribution:

Posterior = Conditional distribution:

http://biorxiv.org/content/biorxiv/early/2017/10/10/095190.full.pdf



GP-UCB for cumulative regret

16https://arxiv.org/pdf/0912.3995.pdf



Naive Batch GP-UCB (BGPUCB)

Pick K arms from UCB hull with maximum sum.

Over-optimistic: sums up confidence bounds of correlated variables

No combinatorial blow-up.
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Batch Thompson Sampling (BGPTS)

Draw sample function from current posterior.

Pick K arms from this sample function with maximum sum.

Probabilistic matching property still holds.

No combinatorial blow-up.



Improved Batch GP-UCB (IBGPUCB)
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Enumerate all C(N,K) sets.
Each set has arms X1, X2, X3,...,XK.

Mean of this super-arm: 

Variance of super-arm:  

Confidence bounds computed by summing up K-slices of the 
covariance matrix.
Pick super-arm with highest improved UCB.

Combinatorial blow-up.
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Look-ahead Batch GP-UCB (LBGPUCB)

Smooth prior: (correlated means and) correlated confidence bounds.

Might lead to less exploration.

Sampling one arm enough to update nearby values as well.

Hence, IGPUCB may be picking too many arms close to each other.

Idea: Covariance updates only depend on picked locations (not values)

In a batch, pick the K arms on at a time using GP-UCB. 

Update mean after each batch (virtual sampling). 

Update covariance at each step.

No combinatorial blowup.
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Simulations for Cumulative Regret for K=3
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Noise variance = 1.0; Averaged over 10 functions; 5 runs per function



Other considerations

• Correlated noise can be incorporated (only covariance matrix changes).
• Learn the hyperparameters of the GP kernel as well.
• Faster approximate GP inference.
• Improved Thompson sampling by taking only positive perturbations.
• Compare IBGP-UCB and LBGP-UCB for simple regret.
• Alloting some arms to pure exploration may improve performance.

21

Thank You
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