Voice Conversion using Generative Adversarial Networks

Varun Sreedhara Bhatt Arka Sadhu Karan Taneja
140260004 140070011 15D070022
Abstract the speech as spoken by the target speaker. In parallel case,

Voice conversion is the task of converting speech of a
source speaker as a target speaker would have said it.
This project considers the case of non-parallel dataset
where the source and target speakers don’t speak the
same sentence in the training set and shows that using
sentence embeddings in combination with WGAN can
give an improvement over existing methods.

Task Definition

We are given an audio input from speaker s from which
we obtain the spectral frames X, = {xm}ﬁgl where N,
is the number of spectral frames. We are also given a tar-
get speaker ¢ for which we have to generate spectral frames
X, = {:ctm}g;l and therefore the audio output. The au-
dio output should be such that it sounds like target speaker
t speaking the linguistic content of X,. The most common
way to evaluate voice conversion systems currently is to get
subjective opinion from listeners. This is quantified using
the metric called Mean Opinion Score (MOS). Metrics like
mean cepstral coefficients are not used as the findings from
this metric is not consistent with human evaluation (Hsu et
al. 2017).

The work is done using the dataset provided by Voice
Conversion Challenge 2018 !. In this task, in addition to the
source and target voice samples in both parallel and non-
parallel settings, we are also given the corresponding tran-
scriptions. All voice samples are in English and so are the
transcriptions. In this work we extend earlier concepts on
similar data (Voice Conversion Challenge 2016) to exploit
this extra information provided by the transcriptions.

Methodology

There are two ways in which voice conversion can be done,
namely parallel and non-parallel. In parallel voice conver-
sion, both source and target speaker say the same text while
in non-parallel, the text spoken can be different.

Broadly, the idea in voice conversion is to separate a
speech into speaker independent and speaker dependent en-
coding. The speaker independent part is then combined with
the speaker characteristics of the target speaker to generate

"http://vc-challenge.org/

the speaker independent part will be same for both source
speech and target speech during training which can be used
to better separate the speaker dependent part.

C-VAE

The task here is non-parallel as is given in (Hsu et al. 2016).
A conditional Variational Autoencoder (c-VAE) (Sohn et al.
2015) is used to encode (£) the source speech (X) into a
speaker independent representation (2). It is then concate-
nated with the one-hot vector of the target speaker (y) and
passed through a decoder (generator, G) to get the target
speech (X;) as given in (Hsu et al. 2016).

During training, encoder minimizes the KL-divergence
between z and standard normal distribution N (0, 1). The
encoder and decoder together maximize the log likelihood
of data log p(X|z,y) = N(G(z,y),I). The overall cost to
minimize then becomes

Jvae - DKL(ZHN(Oa 1)) - Ing(X|Za y)

Since z is a sample from a distribution which de-
pends on the encoder, it is not possible to do back-
propagation through it. Hence, it is re-parametrized as
N(E,(X), diag(E5(X)). z can then be written as &, (X) +
diag(E,(X))e where € is a sample of N(0,I). Figure 1
shows the architecture of c-VAE.

logp(X | z,y)

{SZKL(Z | | A0, 1))] ‘ Generator ‘

T]
€,(X), €,(X) — 2 y
0.1
X

Figure 1: Architecture of c-VAE

VAWGAN

(Hsu et al. 2017) extend this idea further by adding a
Wasserstein objective function to the generator. A discrimi-
nator network is added to the system which finds the Wasser-
stein distance between the input and the generated speech.
The generator tries to minimize this distance while also max-
imizing the log likelihood.

(Arjovsky et al. 2017) define Wasserstein distance be-
tween 2 probability distributions IP,. and P, as

W(P,,P,) = inf

E - _
TP, P,) (z,y) ’y[Hx yH]

Here, II(P,,PP,) is the set of all joint distributions whose
marginals are [P, and IP,. This distance is also called as Earth
Mover distance since this is the amount of probability mass
that needs to be moved to convert IP,. into P, (or vice versa).

Calculating the infimum is computationally intractable
and hence the above distance is approximated as

W (P, Py) = s Evnp, [f(2)] = Eanp, [f(2)]

fll<1

[|f]]z < 1 denotes all 1-Lipschitz functions.

The discriminator network parametrizes 1-Lipschitz func-
tions f (either by clipping the weights or by introducing
a gradient penalty). P, is the distribution corresponding to
data and P is the distribution corresponding to the gener-
ated data. Every data point given during training is a sample
from the data distribution. The output generated after pass-
ing it through encoder and generator is a sample from the
generated data distribution. Passing them through discrimi-
nator gives f(x) and f(z,) where x is the original data and
x4 is the generated data. Thus, the loss function for the dis-
criminator network is given by

Jwgan = f(X) _f(X|Z7y)

The discriminator needs to maximize this loss while gen-
erator needs to minimize it. When combined with the c-VAE
architecture, the total loss function for the generator to min-
imize becomes

Jgen = —10gp(X|z,y) + aJwgan

where « is a parameter controlling the contribution of
Wasserstein distance to the loss. Figure 2 shows the archi-
tecture of the system with WGAN added.

J,

flog pOX | 2.3) + Jugan f—
T—Mminalor

[@re | | 40.1)] | Generator |
B,(X), E5(X) — T—T I
a~,4j(0,)
X

Figure 2: Architecture of VAWGAN

Jwgan
logp(X | 2 y) + Jwga

Dlscrlmmator

[gKL(| ‘JVOl

‘ Generalor

L2 loss
te

T
“A/(O I ‘ EnT::c:er

Figure 3: Architecture of VAWGAN-S

X

VAWGAN-S

In this work we extend this idea further to incorporate sen-
tence embeddings of the sentence spoken as well. In the
Voice Conversion Challenge 2018, the training data also
contains transcriptions which is used during training. The
architecture proposed is shown in figure 3.

We first get a good representation for the sentence by fol-
lowing the algorithm given in (Arora et al. 2017). The algo-
rithm assumes that we have some word embeddings. For this
task we use the word embeddings provided by fasttext > (Bo-
janowski et al. 2016) which gives a 300-dimensional vector
for each word. Now given a set of sentences we directly get
a weighted mean of word vectors forming the sentence. The
weight is given by ﬁ(w) with a being a hyper-parameter
and p(w) being the unigram probability. Sentence vector is
therefore calculate as below

This gives us a vector v, for each sentence. This is followed
by getting the first singular value of the matrix formed by v,
as its columns which we call u. For each v, its projection on
this vector is subtracted out to get the embedded sentence
vector

Vs 4 vs — uu’ v,

We note that at test time there is no transcription given, so
ideally we would like an encoder which produces the sen-
tence embeddings. For this purpose we add another encoder
called the text encoder which given speech data extracts out
the sentence embeddings.

We had initially thought of using an explicit ASR system
which could output an actual text which could further be em-
bedded using the above algorithm but we didn’t pursue this
line of thought as this method would ultimately be limited
by the efficiency of ASR system because if the word can’t
be decoded, it cannot be henceforth embedded. Instead of
this, we use the text encoder which would find the function
directly from the speech features space to the sentence em-
bedding space.

Once we have the sentence embeddings we pass it to the
generator which makes use of the vector obtained from pre-
vious encoding as well as the speaker id which is encoded as

*https://github.com/facebookresearch/fastText

a one-hot vector to generate the output. The rest of the dis-
criminator part remains the same as that in the VAWGAN.

Algorithm 1 Algorithm to train VAWGAN-S

function AUTOENCODE(X, y, t):
Zy = Ege 1 (X)
Zg 5¢>£ 2(X)
Z < sample from N'(Z,,, Z,)
T €¢T (X)
X' (G)G(Zsa Y, T)
return X', Z. T
end function
Initialize ¢ g, ¢, 0,
while not converged do do
X, T, < minibatch of samples from source
X, Ty + minibatch of samples from target
X!, Zs, T, < AutoEncode(Xs, ys, Ts)
X/, Zy, T] + AutoEncode(Xy, ys, Tt)
Xi|s < Go(Zs, Ts, yt)
Jobs < Jobs(Xs) + Jobs(Xt)
Jlat — Jlat(Zs) + Jlat(Zt)
Jwgan «— Jwgan<Xt7Xs)
Ju — Ju(Ts,T7)
while not converged do do

d) update —Vw(—Jwgan)
update
035 gedate —Vou(Jobs + Jiat)
update
(bT <P_ _V¢T<Jtl)
0 w _va(Jobs + aJwgan)
end while
end while
Implementation Details
VAWGAN

We started with the code give by (Hsu et al. 2016) for voice
conversion using VAE 3. Speech is first converted into spec-
tral features using pyworld vocoder. The spectral features
are then passed into a CNN which acts as the encoder. The
output of this CNN is concatenated with the one-hot repre-
sentation of the speaker and passed into another CNN which
acts as the generator.

We then added the discrminator network to it. The gener-
ated output and the original data are passed through the dis-
criminator to get the Wasserstein distance. The networks are
then trained using their corresponding losses. The hyperpa-
rameter values and the network architectures were same as
that given in (Hsu et al. 2017).

VAWGAN-S

The implementation of VAE and WGAN part is kept the
same as detailed above. To get the sentence embedding we
use pre-trained vectors from FastText (Bojanowski et al.

3https://github.com/JeremyCCHsu/vae-npvc

2016). To get the unigram probability distribution we ini-
tially used the corpus WikiText2 (Merity et al. 2016). Unfor-
tunately, this corpus doesn’t include common words used in
spoken English. For eg., the corpus didn’t include the word
”I” which is expected because of the form of sentences used
in the corpus. We then considered using the corpus provided
by Peter Norvig * which uses % million most frequent words
to generate the unigram distribution. We expect similar sen-
tence embedding because as it is mentioned in (Arora ef al.
2017) that the embeddings generalizes across different cor-
pus. There is a hyperparameter a used in weighing different
words which we set it as a constant 10~2 which is the same
as used in the paper.

Now we train a text encoder to generate this sentence em-
beddings. The structure of the text encoder is exactly the
same as that of the encoder used in VAWGAN (explained
above). For training, since we have the transcriptions, we
directly give the sentence embeddings to the generator, and
use a 12-loss metric for the output of the text encoder and the
sentence embedding as is shown in 3. It is noted that the 12
loss saturates very quickly.

At test time, we get two encodings z and f.,.. The gen-
erator now makes use of this new ¢, to generate the audio
output.

Experimental Setup

Voice conversion challenge 2018 dataset > is used for exper-
imentation. The challenge has two tasks HUB and SPOKE
tasks. HUB task consists of parallel training data while the
SPOKE task has non-parallel data. For the HUB task, there
are 4 source speakers and 4 target speakers (2 males and 2
females in each). Each speaker utters the same set of 81 sen-
tences. For the SPOKE task there are 4 other source speaker
(again 2 males and 2 females) and the target speakers remain
the same as from the HUB task.The dataset also provides the
corresponding text transcriptions for each HUB and SPOKE
task.

The evaluation metric we choose is Mean Opinion Score
(MOS), i.e. subjective scores made by different people as is
the standard in the literature for voice conversion (Hsu et
al. 2017). The rating is on a scale of 1-5, with 1 being poor
and 5 being excellent. We gave the users voice samples of
the source, actual target, voice converted VAE baseline and
voice converted using VAWGAN. The information about the
last two is hidden from the user. The user is additionally
asked about the gender identification of the output voice. We
give a total of four samples one from each Female to Female,
Male to Male, Female to Male, Male to Female.

Results and Discussions

Overall VAWGAN ratings are better than VAE baseline
which is consistent with the results presented in (Hsu et al.
2017). VAWGAN clearly outperforms VAE baseline model
in both inter-gender and intra-gender conversion tasks as
seen in figures 4 and 5. MOS is higher in both cases and even

“http://norvig.com/ngrams/

Shttp://ve-challenge.org/

in a direct comparison, speech from VAWGAN is regarded
better. Decrease in MOS for both the architectures between
intra-gender and inter-gender shows that inter-gender con-
version in general more difficult than intra-gender.

Gender identification errors (errors in identifying the gen-
der of the target speaker) in inter-gender conversion in
higher VAE baseline model compared to VAWGAN. This
shows that the addition of Wasserstein objective function led
the generator to better combine the encoded information and
speaker characteristics.

The length of the sentence played a role in the quality of
conversion. VCC 2018 dataset has much longer sentences as
compared to VCC 2016 dataset and it directly affects conver-
sion, decreasing the MOS. We believe that allowing variable
size feature length (by using a sequential architecture) could
solve this problem.

Points scored

B VvAE
B VAWGAN

Intra-gender

Inter-gender

Figure 4: MOS for baseline and VAWGAN

VAWGAN

Much Worse

Much Better

~— Worse

N Same

Better

Figure 5: Qualitative comparison between baseline and
VAWGAN

Future Work

The quality of the audio generated is still not on par with the
audio generated by parallel conversion and doesn’t sound
very natural. Since there is no alignment in the data, a non-
parallel conversion relies on getting a good representation of
the content and speaker which is used to generated converted
voice.

Gender Identification

B VAE
B VAWGAN

Incorrect
Can't Say

Correct

Figure 6: Gender Identification Results for baseline and
VAWGAN

The content representation is currently done with the help
of an encoder. Instead, the word or phone sequence of the
source speech can be generated using a automatic speech
recognition system and used as the content representation.
Our work on sentence embedding is a step in that direction.

Speaker representation is given in the form of a one-hot
vector in this project. If better representation like i-vectors
are given, the generator can use it for generating better con-
versions. Passing the speaker representation to the encoder
might also help it encode only the speaker independent part,
hence, improving the quality of content representation.

Summary

The results of voice conversion using VAE and WGAN
given in (Hsu et al. 2017) have been replicated. A novel
method of extending it by using sentence embeddings as a
representation of content has been developed.

In future, better speaker representation like i-vectors and
better content representation can be used for improving en-
coding and generation.

References

Martin Arjovsky, Soumith Chintala, and Lon Bottou.
Wasserstein gan, 2017.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but
tough-to-beat baseline for sentence embeddings. 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword in-
formation. arXiv preprint arXiv:1607.04606, 2016.

Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao,
and Hsin-Min Wang. Voice conversion from non-parallel
corpora using variational auto-encoder, 2016.

Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao,
and Hsin-Min Wang. Voice conversion from unaligned cor-
pora using variational autoencoding wasserstein generative
adversarial networks, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. CoRR,
abs/1609.07843, 2016.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 3483-3491. Cur-
ran Associates, Inc., 2015.

