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Recipe Generation

Creative process of recipe design:
* Inspiration for new recipes

* Writing recipe drafts

e Exploring flavor combinations

Large language models can

* Generate multiple possible recipes

e Complete incomplete ingredient lists
* Generate recipe instructions




Chocolate Chip Cookies
Ingredients:
1/2 cup unsalted butter

3/4 cup brown sugar
3/4 cup 7

flour

chocolate

@ > sugar

GPT-2

D ( next token | Chocolate Chip
Cookies ... brown sugar; 3/4

cup )

p(x1, X3, ..., Xp) = p(x1)p(x2|x1)p(x3]%1, X72)

(X | X1, ey X—1)



flour
Chocolate Chip Cookies
chocolate .
Ingredients:
sugar 3 1/2 cup unsalted butter
3/4 cup brown sugar
3/4 cup

D ( next token | Chocolate Chip
Cookies ... brown sugar; 3/4

cup )
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Limitations
of previous
recipe
generation
methods

Repeated ingredients

1 teaspoon black pepper;
1 cup carrots, diced;

1 tsp ground cinnamon;
1 teaspoon black pepper;
other...

Inconsistencies

Recipe Name: Chicken Soup

Ingredients:

1 cup diced carrots;

1 teaspoon white pepper;
3 cups water;

salt to taste

No ‘chicken’ in the
ingredients list



LLMSs generate text by sampling one token at a time and
appending it to the existing text.

nere is a high focus on local coherence
and a lack of attention to the long-term
view of the given context.
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Training GPT-2 tor
Recipe Generation

Recipe Name  <|startofname | > Chocolate Chip Cookies < | endofname | >
< <|startofingr>
Ingredients  1/2 cup unsalted butter; ...
<|endofingr|>



Training GPT-2 tor
Recipe Generation

Recipe Name  <|startofname | > Chocolate Chip Cookies < | endofname | >
<|startofingr>

Ingredients  1/2 cup unsalted butter; ...
<|endofingr|>
< | startofinst| >
Evenly position 2 racks in the middle of the oven and

Instructions  Preheat to 375 degrees |
Line 2 baking sheets with parchment paper ...
<|endofinst| >




Monte Carlo Tree
Search

A search algorithm used in Al
agents for playing strategy
games such as Chess, Go, and
Checkers.

Swiechowski et al. 2022. Monte Carlo Tree Search: A review of recent
modifications and applications. (Artificial Intelligence Review)
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Pros and Cons of
MCTS for Recipe
Generation

Pros

Controllable generation using
reward functions that impose
soft constraints.

No additional training of model
or reward function after domain-
specific fine-tuning of LLMs or
prompting in newer LLMs.

Can be wrapped over an API
that exposes the next token
probabilities.

cons

Computationally expensive
compared to generating text in a
single pass.



Baselines and Our Method

Top-p sampling (or Nucleus sampling)

Use only top n words, where n is smallest number such that the probability of top n words
adds to” = p.

Top-p Sampling with Repetition Penalty
Exponential penalty on repeating tokens.

Top-p Sampling with No n-gram Repetitions
Strictly prohibiting repeating sequences of n tokens (n = 4).

RecipeMC
Our method that uses fine-tuned GPT-2 + MCTS, Reward Functions



Automatic Evaluation

Name — Ingredients

Sampling Method Coherence F'-Score Perplexity] ROUGE-1 ROUGE-2 BLEU Repetition|
Ground Truth 0.451 - 2.934 - - - 0.667
Top-p 0.443 0.572 4.173 0.457 0.200 0.155 1.724

+ No 4-gram Repetition 0.444 0.562 5.150 0.456 0.198 0.144 1.641

+ Repetition Penalty 0.413 0.548 6.754 0.407 0.135 0.115 0.711
RecipeMC 0.513 0.597 3.961 0.505 0.242 0.210 0.192

Name, Ingredients = Instructions

Sampling Method Coherence Perplexityl] ROUGE-1 ROUGE-2 BLEU

Ground Truth 0.486 4.115 - - -

Top-p 0.709 7.948 0.338 0.102 0.067
+ No 4-gram Repetition 0.690 8.441 0.339 0.103 0.069
+ Repetition Penalty 0.416 11.680 0.301 0.072 0.044

RecipeMC 0.768 7.337 0.362 0.115 0.080




Coherence 7
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Recipe: Vegetarian Cupcakes for Pups
Choose the fake (Al-generated) recipe:

| teaspoon vanilla extract

1/2 cup butter, softened (8 3 cups water
tablespoons) 2 bananas

2 teaspoons baking powder I teaspoon nutmeg

3 cups all-purpose flour 12 teaspoon vanilla

3 ounces semisweet chocolate or | teaspoon baking powder
white baking bars, finely chopped I teaspoon cinnamon

1/4 teaspoon salt 2 tablespoons honey

1/3 cup sour cream 4 cups whole wheat flour
4 egg whites 1 egg

1/2 teaspoon baking soda 2 carrots, shredded

6 packets Sugar Substitute



Recipe Name
|

¢ }
Real Al-generated
Ingredients Ingredients

Recipe Name

+ Ingredients
|

\Z v
Real Al-generated
Instructions Instructions

Method Real Gen. P(Incorrect)
Top-p 175 185 0.4861

+ No 4-gram Repetition 179 200 0.4723

+ Repetition Penalty 183 180 0.5041
RecipeMC 201 167 0.5462
Overall 738 732 0.5020
Method Real Gen. P(Incorrect)
Top-p 51 42 0.5484

+ No 4-gram Repetition 67 62 0.5194

+ Repetition Penalty 36 65 0.3564
RecipeMC 57 35 0.6196
Overall 211 204 0.5084




Takeaway

Simple manually-defined reward tfunctions can
be easily used to guide text generation using
Monte Carlo Tree Search...

« Without training a reward model.
« With any API that exposes next token probabilities.
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Monte Carlo Tree
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Monte Carlo Tree
Search (MCTS)

Step 4: BacRpropagation
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Average recipe lengths

Method Ingredients Instructions
Ground Truth 167 240
Top-p 247 485

+ No 4-gram Repetition 248 484

+ Repetition Penalty 233 545

RecipeMC 190 441
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