
Coding Bootcamp
(Session 2)

Udayan Joshi, Karan Taneja

WHAT IS DSA!?
● An algorithm is an unambiguous

specification of how to solve a class of
problems

● Involves calculation, data processing and
automated reasoning tasks

● A data structure is a data organization and
storage format that enables efficient
access and modification

WHAT IS COMPUTATIONAL COMPLEXITY
● Time Complexity: Running time of the

program as a function of the size of input
● Space Complexity: Amount of computer memory

required during the program execution, as a
function of the input size

● There are other kinds of resources such as
power, number of random bits used etc.

More on Complexity Theory
● Complexity Theory is the study of resources necessary and

sufficient for performing different computational tasks
● The goal is thus to determine the intrinsic complexity of

any well defined computational task.
● The runtime behaviour of an algorithm, also called its

growth rate, can be measured as a function T of its input
size n. The function T(n) is equal to the maximum number
of basic operations that an algorithm performs on inputs
of length n.

● At times this function T(n) is highly dependent on the
low-level details.

● Asymptotic complexity provides an abstraction to these
low-level details of the underlying machine architecture
and involved constants.

● However, it is difficult to determine the complexity for
individual tasks. Complexity theorists thus try to
determine the relation between different computational
tasks.

● a complexity class is a set of problems of related
resource-based complexity(We will not be studying this).

Big oh notation
● A convenient way of describing the growth

rate of a function and hence the time
complexity of an algorithm.

● Gives asymptotic upper bound of the
functions

DEFINITION : T(n) is O(f(n)) if the limit of
T(n)/f(n), is a constant as n goes to
infinity.

O(n) notation thus focuses on the largest
term and ignores constants.

COMMON USAGE
● O(g(n)) is a class of functions
● O(1) is commonly referred to as constant time, O(n)

indicates linear time; O(nk) (k fixed and finite) refers
to polynomial time; O(logn) is called logarithmic time;
O(2n) is referred to as exponential time

Other Asymptotic Notations
● Small-oh notation: strict asymptotic upper bound
● Big-Omega notation: asymptotic lower bound
● small-Omega notation: strict asymptotic lower bound
● Big-Theta notation: combined upper and lower bound

Is small-Theta notation possible?

FIBONACCI PROBLEM
● Leonard Fibonacci, the mathematician

studied a pair of fictional and slightly
unbelievable baby rabbits, a baby boy
rabbit and a baby girl rabbit

Master’s theorem

Dynamic Programming

Idea of Dynamic Programming: Dynamic Programming refers to simplifying a
complicated problem by breaking it down into simpler sub-problems in a
recursive manner. The two conditions that the problem must satisfy in order to
apply dynamic programming are as follows:

Optimal Substructure Property: A given problems has Optimal Substructure
Property if optimal solution of the given problem can be obtained by using
optimal solutions of its subproblems.

Overlapping Subproblems Property: Simply put, solutions of same subproblems are
needed again and again.

Given an array of integers, find the subset of non-adjacent elements with the
maximum sum. Calculate the sum of that subset.

Example:

arr = [-2, 1, 3, -4, 5]

[3, 5] have maximum sum of 8. Answer is 8.

Dynamic Programming

Dynamic Programming

Given an array of integers, find the subset of non-adjacent elements with the
maximum sum. Calculate the sum of that subset.

Solution:

dp[0] = max(0, arr[0]) , dp[1] = max(dp[0], arr[1])

dp[i] = max(dp[i-1], dp[i-2], dp[i-2]+arr[i])

Greedy Algorithms

Idea of Greedy Algorithms

Naively, An algorithm is called greedy if it makes locally optimal choices in hopes of
finding a global optimum. Clearly not all greedy algorithms give the correct solution. If
you are using a greedy algorithm, then you also need to prove its correctness.

Proofs by Exchange Argument

Assume that there exists another better solution. Show that it is not possible
to have such a solution by contradiction.

Greedy Algorithms

A group of friends want to buy a bouquet of flowers. The florist wants to maximize
his number of new customers and the money he makes. To do this, he decides he'll
multiply the price of each flower by the number of that customer's previously
purchased flowers plus 1. Given the size of the group of friends, the number of
flowers they want to purchase and the original prices of the flowers, determine the
minimum cost to purchase all of the flowers.

Example:

2 friends want to buy 3 types of flowers. Prices are 2, 5 and 6.

First friend: (0+1) x 5 + (1+1) x 2, Second friend: (0+1) x 6. Answer is 15.

Greedy Algorithms

A group of friends want to buy a bouquet of flowers. The florist wants to maximize
his number of new customers and the money he makes. To do this, he decides he'll
multiply the price of each flower by the number of that customer's previously
purchased flowers plus 1. Given the size of the group of friends, the number of
flowers they want to purchase and the original prices of the flowers, determine the
minimum cost to purchase all of the flowers.

Solution:

Sort the prices from largest to smallest. Divide the first ‘k’ (k = number of
friends) most expensive flowers among them, i.e. one to each. Divide next k
among them and so on.

Graphs

Edges

Nodes/Vertices

Edge Weights

Directed versus Undirected Graph

Adjacency List and Adjacency Matrix

Graphs

Connected Graph

Complete Graph

Bipartite Graph

Cyclic Graph

Trees

Graphs

BFS

DFS

Prim’s Minimum Spanning Tree (MST) Algorithm

Kruskal’s MST Algorithm

Dijkstra’s Shortest Path Algorithm

Bellman Ford Shortest Path Algorithm

Graphs - Some Homework!

Graphs

Example Problem: Link

Let’s solve it!

https://www.hackerrank.com/challenges/torque-and-development/problem?h_l=interview&playlist_slugs%5B%5D=interview-preparation-kit&playlist_slugs%5B%5D=graphs

Trees

Forest

Connected Graphs:

(number of edges = number of nodes - 1)

Binary Tree

Binary tree

Example of Huffman Code

Resources

HackerRank: https://www.hackerrank.com/

See resources from previous session for more information.

https://www.hackerrank.com/

